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ABSTRACT
Job search and career discovery are well-known challenges for stu-
dents: aligning academic achievements and interests with potential
jobs requires external expertise from career offices and extensive
research from students. Yet we know that job awareness among
internship seekers remains quite low. We present an end-to-end ex-
ploratory system that allows a user to engage into career discovery
and course planning with a single college course as an input. This
experience is powered by three core machine learning models: a
course sequence model that suggests other courses the user might
have taken, a college course classification model that groups unique
college courses into subject groups, and a course-to-skills and jobs
model that projects these course categories into career domain.
This paper discusses in detail the design and implementation re-
quirements for the exploratory system along with the underlying
models, their architecture and performance.

CCS CONCEPTS
•Computingmethodologies→ Information extraction;Neu-
ral networks; Classification and regression trees; • Information
systems → Expert systems.
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1 INTRODUCTION
Finding an internship and a first job has never been easy for stu-
dents: a number of studies highlight difficulties that students face
entering workforce (e.g. [15], [8], [14]). Many of these issues relate
to the lack of information about the connection between the aca-
demic curriculum acquired in college and the types of relevant jobs.
While there are several large-scale systems that attempt to bridge
this gap through a manually or algorithmically designed crosswalk
between majors and occupations (such as [10] and [9]), connecting
specific coursework and professional roles at scale remains an open
problem. This task is particularly important given the high numbers
of students leaving college without a degree and struggling to find
jobs utilizing their academic expertise and paying comparably to
their incurred college debt [4], a diversity in major offerings and
curriculum across them (e.g. [13], [12]), and an increasing value of
internships for both employers and job applicants ([14], [3]).

We present a large-scale end-to-end exploratory system that
allows a user to engage in career discovery and course planning
with a single college course or a major as a minimal input. The
scope of courses or majors is unlimited but expected to be within the
U.S. educational system as the models that support the system are

trained to represent the U.S. educational and professional landscape.
Such system can support the following use cases:

(1) inform freshmen and sophomores with no declared majors
about relevant internships given their coursework;

(2) help people who left college without a degree explore jobs
relevant to their coursework;

(3) facilitate course selection.
Importantly, this exploratory system does not imply that a stu-

dent taking a single course is qualified to do a recommended job;
instead, it aims to raise student’s awareness about the jobs that
apply the skills usually learned through this course.

The rest of the paper is organized as follows: we present the
main flow of the system and its modeling requirements and then
discuss in detail each of the three core machine learning models
that define it: a college course classification model that groups
unique college courses into course categories, a course sequence
model that suggests other courses a user might have taken, and a
course category-to-skills and jobs model that projects these course
categories into career domain.

2 ARCHITECTURE
2.1 System Flow
We describe an interaction flow in the course-to-job exploratory
system following Figure 1. A session starts with a user entering
her major or her college course name, her college name, and a
year of enrollment. If a course name is provided, our first core
model–a college course name classifier–maps the raw input to one
of 2300 course categories, as described in 3. Majors are offered for
user selection from the CIP list [10] or could be submitted as a
typed-in input (then mapped to the CIP list through a proprietary
raw major classifier). The college names are mapped to the IPEDS
college classification [11] through a proprietary raw college name
classifier.

Next, based on whether the input includes a major or a course,
the system returns a list of courses that the user might have taken
along or before her current college course or within her major pro-
gram. Although available through two different inputs, the output
is powered by one course sequence model, discussed in 4.2. Similar
to the course classifier, the course sequence model operates on
the course category level. To ensure that the user is familiar with
the predicted course categories, we map them back to the college
course offerings using the course classifier on a partner data set
that covers U.S. college coursework, as introduced in 3.

The user is then asked to select the courses from the model
predictions and add more, if none were relevant. If she types in
additional courses, we apply the course classifier from the first



step to process the input. Finally, the system presents a list of job
titles that are relevant given the selected coursework. This part is
supported by the third core model - the course-to-jobs model.

Figure 1: Course-to-jobs system workflow

2.2 Modeling Requirements
To support the described flow, our exploratory system has to satisfy
the following design and modeling requirements:

• Scalability:to account for a large diversity of course and
major offerings across the U.S. colleges, along with jobs,
and to handle data sparsity, the system should utilize back-
end models with canonical (or normalized) lists of majors,
courses, colleges, and jobs. These canonical lists are either
provided externally (the IPEDs classification of colleges and
the CIP classification of majors) or developed internally (the
job titles and skills). It is also critical for the core models to
work with the same course units as their inputs – the course
categories.

• Coverage: the system should support varied text inputs for
colleges, majors and course names. This requires normaliza-
tion models that would process raw inputs and map them
into canonical sets of colleges, majors or course names. The
underlying course and job data in model training should be
representative of the U.S. colleges and labor market.

• Familiarity: the courses that it presents should be familiar
to users. For courses, it means that the returned courses
should be the ones offered in their college; for jobs, we expect
to show the occupation titles that are common in the current
labor market.

• Relevance and transparency: both intermediate and final
output recommendations should be relevant to user’s input.
Each modeling component is evaluated on transparent met-
rics, and the system design supports step-by-step exploration
and is highly interactive.

Although the scope of the modeling requirements for our system
goes well beyond the course-focused models, we concentrate just
on them for the sake of clarity and relevance.

Table 1: Classification examples for college course names

College Course Name Predicted Course Category
Statistics for Health Pro Medical Sciences: Basic:

Biostatistics
Modern Arab-Muslim
Thought

Political Science: Comparative
Gov’t: Gov’t and Politics: Middle
East

Folklore of
Contemporary Greece

Classics: Greek Language and
Literature

3 COURSE NORMALIZATION TASK:
COLLEGE COURSE CLASSIFIER

The college course classifier plays a key normalization role in the
course-to-job system: in the first step, it takes a raw course name
and maps it to a course category; later it takes predicted course
categories and maps them back to specific college course offerings.
The classifier is described in detail in [2]. It is based on two core
data sources: the first one is NPD PubTrack Digital, a proprietary
textbook-to-course classification that includes over a hundred thou-
sand ISBNs assigned to one of 2300 course categories. The course
classification is hierarchical and includes 56 top-level course cate-
gories (e.g. Engineering) that further splits into granular categories,
such as Mechanical Engineering and Electrical Engineering, and up
to three levels deep to represent subject-specific subcategories). The
second data set is Market Data Retrieval data (MDR) composed of
3.1M records of college courses taught in the U.S. institutions from
2005 to 2016. We use an extended overlap between the two data
sets with 72,700 course names – course categories pairs to train
two best-performing models: an LSTM classifier and a sequence-
to-sequence (seq2seq) prediction model. The model architectures
are described in detail in [2]. While the LSTM classifier performs
best on the test set reaching an accuracy of 91% – two points above
the seq2seq model, the latter does better in the human evaluation
tasks reaching 88% relevance. Table 1 shows a few examples of the
college course names and predictions made by the classifier.

The system implementation for raw input classification is based
on these two models: we apply the seq2seq model to pre-populate a
cache of the known college course names from the MDR data with
their categories, and we use the LSTM model to power on-the-fly
classification tasks. We search through the same cache, extended
with the college and time information, to give the course categories
in the course prediction task familiar names. For example, a course
category of Art: Studio Art: Design: Graphic might have the fol-
lowing course offerings at the California State University - Fresno:
GRAPHIC DESIGN: COMPUTER IMAGING, GRAPHIC CONCEPT
DEVELOPMENT, BEGINNING 3D DIGITAL ART MODELING, IN-
TRODUCTION TO COMPUTER ART.

4 COURSE PREDICTION TASK
4.1 ISBN-to-Course Category Mapping
While NPD PubTrack Digital has a wide coverage, it does not in-
clude all the ISBNs found in the Chegg orders. Since the order and

2



textbook data is instrumental for the course sequence and course-
to-jobs models, we apply an auxiliary model that produces course
category labels for the unclassified ISBNs. The model is based on
a character-level fastText [1] embedding space built on the book
titles and abstracts for the ISBNs with the course category labels.
We retrieve a vector for an unassigned book, search for the nearest
neighbor among the labeled books and propagate the label of the
book with the highest score. This method reaches an accuracy of
90% and 86% for the first and second level course categories re-
spectively and appears to be more accurate than the search for the
nearest course category with the average course category embed-
dings.

4.2 Course Sequence Modeling
We aim to infer additional course enrollment information from
incomplete data. Students come into our system providing limited
input such as a major or partial coursework information. In or-
der to recommend jobs on such limited input, we infer complete
coursework. This is similar to the problem outlined in [6] with two
differences. First, this problem requires the ability to infer courses
from a major in addition to incomplete course information. Second,
this model considers the sequence of courses taken and can infer
courses already taken. This allows the job recommendations to be
based on the student’s current skill set.

Data – The coursework data focuses on mostly 4-year college
curriculum. Vocational, graduate, and professional curriculum has
little to no representation in the training data.

The training data is based on three sources. The first and largest
is the partial courses data used in [6]. The second and the third
are scraped course catalogs and course requirements for majors
for a representative sample of 4-year U.S. colleges. From these
sources, we obtain the course sequence and, for some sequences,
the accompanied major.

In data sources where the course name was known, we identi-
fied the course categories for each college course using the model
described in Section 3. In data sources where the ISBN was known,
we mapped the book to an appropriate course category using the
model described in 4.1.

Model – The prediction task is to choose the previous or next
course taken based on either a course sequence, a major, or a course
sequence and a major. The courses and majors are treated as bags-
of-words. The input course sequence model was trained with a
Keras [5] implementation of a GRU with a dropout on the input and
recurrent state, an L2 regularization applied for learning the kernel
weights, a tanh activation function, and an SGD optimizer with
a learning rate of .001. An LSTM model was trained but required
more computational resources with no lift in accuracy. The major
bag-of-words vector was concatenated to the course GRU output.
The last layers are a tahn activation layer and a softmax prediction
layer. The loss is categorical cross-entropy.

Because people typically take multiple courses at once, there
are multiple correct predictions for a given time step. However,
when training with categorical cross-entropy, only one true class
is given at a time. To accommodate for this, the same sequence
may be used as input multiple times, once for each true class in
the previous time step. An alternative to this model was tested –

Table 2: Course sequence accuracy

Data Cross-
entropy

Course
Accuracy

Level 1
Accuracy

Median
Rank

Partial Courses
Data

Binary 15% 42% 51
Categorical 17% 44% 45

Scraped
Courses

Binary 46% 76% 8
Categorical 59% 80% 7

Scraped Major
Requirements

Binary 22% 52% 22
Categorical 28% 54% 18

one that is trained on all the courses in the predicted time step at
once, using binary cross-entropy and a sigmoid activation in the
prediction layer. The advantage of this method is that it reflects the
real-world multi-label nature of this problem. However, as shown
on Table 2, the model with categorical cross-entropy loss achieved
higher accuracy.

Evaluation – Multiple accuracy metrics were used to evaluate
the model. These metrics measure model performance against a
withheld test set representative of the three data sources.

The first metric is the rate at which the actual course in the
testing set is predicted. Because multiple courses are taken in a
single time period and there are many correct answers, we look
at the top-5 predicted courses as a more robust metric over the
top-1 predicted course. The second metric takes advantage of the
hierarchical structure of our course categories. We can measure
the rate at which Level 1 course category, or the course subject, is
accurately predicted. The third metric is the median rank of the
actual course.

The metrics in Table 2 show that the model trained with cate-
gorical cross-entropy achieves higher accuracy of 59% and 80% for
course and course subject on the scraped course catalog portion of
the test set. This data contains many prerequisite course sequences
which follow focused disciplines and time series. On the other hand,
the data from partial courses reflects a subset of the coursework
that people took. Some college curriculum includes general educa-
tion requirements and elections from a diverse set of disciplines.
Because one course may be completely unrelated to another course
in a given sequence, predicting course sequences in this test set is
a much more difficult task.

The evaluation metrics and model training optimize prediction
accuracy, so that it tends to predict courses that are more likely to
be included in a coursework given the input of the course sequence
and major. This may not always align with other factors such as
courses that are the most useful and relevant to career aspirations.
To measure against these other factors, we would need additional
evaluation data. To give a sense of the results, Table 3 shows pre-
dictions for a couple of course categories that were unseen during
training.

5 JOB PROJECTION TASK:
COURSE-TO-SKILLS AND JOB TITLES

This model aims at projecting course categories into career domain.
We map course categories to canonical skills that we assume are
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Table 3: Course sequence examples

Course Category Previous Courses

Engineering: Mechanical:
Conductive Heat Transfer

Engineering: Mechanical: Fluid Me-
chanics
Engineering: General: Materials Sci-
ence
Engineering: Mechanical: Thermo-
dynamics
Engineering: Mechanical: Machine
Design

Engineering: Mechanical:
Plasticity

Engineering: Mechanics: Strength
of Materials
Physics: Introductory: College
Engineering: Mechanical: Fluid Me-
chanics
Mathematics: Calculus: Differential
Equations

covered within the course curriculum and then find the relevant
job titles for the given skills.

Data – We use partner electronic textbooks mapped to course
categories as our primary data source.

Model – Course-to-skills and jobs model is powered by an in-
house 300-dimensional word2vec [7] embedding space trained on
70 million resumes and representing professional and educational
experience. To obtain this vector space, we treat each resume as
a sequence of entities - majors, colleges, jobs, and skills - ordered
chronologically. We apply a skip-gram model with hierarchical
sampling, with a threshold of 100 observations for each entity, 10
negative samples drawn and a window covering 15 entities in a
sequence. This choice of model and hyperparameters allows us
to learn similarity relationships across different entities, such as
finding relevant skills for a given title through nearest neighbor
search). The embedding space is evaluated across several entity
similarity tasks and downstream applications where the learned
embeddings are used as an input for classification and clustering
models.

Canonical lists of skills (18,000 skills) and job titles (8,500 job
titles) are developed internally on top of a proprietary embedding
model trained on the same resume data. The canonical skills in-
clude tools, or ’hard’ skills (java, salesforce), topics (particle physics,
gene sequencing), functional determinants (project management),
activities (greeting customers) and ’soft’ skills (hard-working). Both
canonical lists are non-hierarchical.

Although a small sample of the resume data has course infor-
mation, we chose against training on it due to a high variance
in professional outcomes, a resume author pre-selection bias for
courses (i.e. which courses they consider relevant to a desired pro-
fession) and a lack of conceptual connection between skills learned
from a course and the resume jobs.

To learn an association between courses and skills, we start with
extracting canonical skills from the e-book table of contents using
n-gram matching and aggregating them for each course category.
Next, we retrieve skill vectors from the resume embedding space

Table 4: Job title examples for course categories

Course Category Relevant Jobs

Architecture: Urban Planning

City planner
Urban designer
Planning commissioner
Water resources planner
Ranger

Physics: Particle

Applied mathematician
Research engineer
Physicist
Physics graduate student
Postdoctoral research associate

Anthropology: Archeology:
Introduction

Archeologist
Assistant to the curator
Historian
Conservation technician
Museum specialist

to calculate a centroid for each course category using an embed-
ding average weighted with skill-category counts. With this, we
obtain course category representations that are reflective of the
skill content observed in the categories’ textbooks and embedded in
the resume space. The latter allows us to perform nearest-neighbor
search of the canonical job titles and rank them using cosine simi-
larity. We also re-rank the observed skills via cosine similarity and
additional heuristics.

Table 4 shows the top-ranked titles for a few course categories.
Evaluation – Due to the unsupervised nature of this model,

finding meaningful evaluation metrics is not trivial. We made the
following assumption for the quantitative evaluation: given a user
textbook order data and her resume, the model should be able to
predict the skills and job titles listed in that resume. This evaluation
assumes that textbook orders are representative of the future career
choices which, as we mentioned in 4.2, might be only somewhat
true.

The evaluation set includes 100,000 textbook order-resume pairs
for users who bought or searched for more than three books. We
obtained course categories for the textbooks, extracted skills from
their resumes using our in-house skill extraction model and com-
pared these with the ranked skills of the corresponding course
categories. We used exact string match and high cosine similarity
(greater than 0.7 in order to bridge the gap between academic skills
and practical skills) to compare the two lists. The average recall
over all the users for top-20 skills was 12%. We also compared the
first job in the resume with top-100 job titles relevant to the course
categories. The recall percentage was 30% with an average rank of
15. Interestingly, the recall for jobs was higher than for the skills:
it is indicative that the skills are self-declared and possibly reflect
career aspirations and skill value assumptions held by the resume
owners.

For the qualitative evaluation we asked human experts to review
top-10 skills for 330 course categories and judge the quality of skills
as relevant/irrelevant to their respective course categories. 77% of
the course categories were found to have relevant top-ranked skills.
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6 CONCLUSIONS
We present the course-to-jobs exploratory system and the key un-
derlying models: trained to account for raw data, the models aim
to process any course name, major and college input from a user
and output relevant course and job suggestions. This allows our
system to provide insights on professional outcomes at scale, with
no college or discipline restrictions. As the system makes its way
to the users, our next critical step is to collect significant user feed-
back from interactions with each of the system components and
incorporate it into model development.
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