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Abstract

In many online educational environments, a common problem is how to select1

the best questions to give to a user in order to maximize their learning over the2

limited period of time they interact with the platform. We consider the problem3

of determining the best policy, or sequence of questions, to give to a user in a4

fixed period where both the amount of time they spend on each question and the5

benefit they gain from it are stochastic (but can be simulated). This problem is,6

in essence, the stochastic knapsack problem, a PSPACE-hard problem that has7

been studied extensively in operations research. It is desirable that any solution8

algorithm produces sequences of question that depend on the amount of time that9

the user spent on the preceding questions. We propose a new adaptive algorithm10

for the stochastic knapsack problem that uses techniques from multi-armed bandits11

to explore only potentially good policies. Our algorithm is adaptive to the amount12

of remaining time and can be shown to obtain a solution within ε of the optimal.13

We then discuss the use of this algorithm in an online education environment.14

1 Introduction15

In online education, one key challenge is to provide students with personalized sequences of questions16

that make the best use of the users time to maximize learning. Imagine an app that a user interacts17

with for 15 minutes a day in order to learn a new language or skill. The app must decide which18

questions it can give the student in this time period in order to maximize their learning. However,19

the amount of time the student will take to complete each question and the benefit they will gain20

from doing so are both stochastic. This stochasticity makes the problem considerable more difficult.21

In order to deal with it, we assume we are able to simulate accurately user time and reward from22

completing each question. Much work has focused on obtaining good predictive models of student23

performance and question time (see for example, [7, 11, 17]), and we assume we have access to such24

models at an individual student level (since this leads to better decision making [13]).25

The stochastic knapsack problem [8], is a classic resource allocation problem that consists of selecting26

a subset of items to place into a knapsack of a given capacity. Placing each item in the knapsack27

consumes a random amount of the capacity and provides a stochastic reward. Our problem of28

selecting which questions to give to a user in a 15 minute exercise can be thought of as the stochastic29

knapsack problem. Each question (item) will take a random amount of time (size) and improve the30

student’s knowledge in a stochastic manner (reward). To make optimal use of the available time the31

app needs to track the progress of the user and adjust accordingly. Once an item is placed in the32

knapsack, we assume we observe its realized size and can use this to make future decisions. This33

enables us to consider adaptive or closed loop strategies, which will generally perform better [9] than34

open loop strategies in which the schedule is invariant of the remaining time.35

For our purposes, it is desirable to have methods for the stochastic knapsack problem that can make36

use of all available resources and adapt with the remaining capacity. One manner of obtaining such37

adaptive solutions is to model the problem as a decision tree as discussed in [9]. However, in all38
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but the simplest cases, this decision tree will be too large to search exhaustively. We propose using39

ideas from optimistic planning [4, 16] to significantly accelerate the tree search by only considering40

policies with high upper confidence bounds. Most optimistic planning algorithms were developed for41

discounted mdps and as such rely on discount factors to limit future reward which are not present42

in the stochastic knapsack problem. Furthermore, in our problem, the random variable representing43

state transitions also provides us with information on the future rewards. To avoid discount factors44

and to use the transition information, we work with confidence bounds that incorporate estimates of45

the remaining capacity and use these estimates to determine how many samples we need. In order46

to do this, we need techniques that can deal with weak dependencies and that give us confidence47

regions that hold simultaneously for multiple sample sizes. We therefore combine Doob’s martingale48

inequality with Azuma-Hoeffding bounds to create high probability bounds. Following the optimistic49

planning approach, we use these bounds to develop an algorithm that adapts to the complexity of the50

problem instance: it is guaranteed to find an ε-good approximation independent of how difficult the51

problem is and, if the problem instance is easy to solve, it expands only a moderate sized tree.52

1.1 Related work53

Finding exact solutions to the simpler deterministic knapsack problem, in which item weights and54

rewards are deterministic, is known to be NP-hard and it has been stated that the stochastic knapsack55

problem is PSPACE-hard [9]. Therefore, most work on the stochastic variant of the problem has56

focused on approximations. The state-of-the-art approaches to the stochastic knapsack problem57

where the reward and resource consumption distributions are known, were introduced in [9] where58

the authors introduced a heuristic that is adaptive and comes within a factor of a 1/3rd of the best59

total reward. The heuristic groups the available items into small and large items and fills the knapsack60

exclusively with items of one of the two groups. The strategy for small items is non-adaptive and61

orders these items according to their reward - consumption ratio, placing items into the knapsack62

according to this ordering. For the large items, a decision tree is built to some predefined depth d and63

an exhaustive search for the best policy in that decision tree is performed.64

Optimistic planning was developed for tree search in large deterministic [12] and stochastic (both65

open [3] and closed [4] loop) systems. The general idea is to use the upper confidence principle of66

the UCB algorithm for multi-armed bandits [1] to expand a tree. This is achieved by expanding nodes67

that have the potential to lead to good solutions through using bounds that take into account both the68

reward received in getting to a node and the reward that could be obtained after moving on from that69

node. [16] use optimistic planning in discounted MDPs, requiring only a generative model of the70

rewards and transitions. Instead of the UCB algorithm, their work relies on the best arm identification71

algorithm of [10]. Optimistic planning algorithms are used to return a near optimal first action and72

are then rerun to select the next action. In our case, the decision tree is a good approximation to73

the entire problem so we can output a near-optimal policy. In our problem, the state transitions74

(size of item/time taken to answer question) provide information about future rewards and so should75

be considered when defining the high confidence bounds. Furthermore, our algorithm iteratively76

builds confidence bounds which are used to determine whether it is necessary to sample more thus77

making more effective use of resources. One would imagine that the StOP algorithm from [16] could78

be easily adapted to the stochastic knapsack problem. However, the assumptions required for this79

algorithm to terminate are too strong for it to be considered a feasible algorithm for our problem.80

In the education literature, there has been some work done on the question selection problem. [6]81

propose to use a non-stationary multi-armed bandit algorithm to select questions for students, without82

the time constraints that are present in our problem. [15] consider the use of POMDPs to determine83

which type of action to take next based on previous success but focus on the choice between types of84

actions (such as videos, quizes or questions with feedback) rather than the specific question itself. [5]85

also use reinforcement learning algorithms to work towards a similar aim.86

1.2 Our contribution87

Our main contributions are the confidence bounds in Lemma 1 and Proposition 2 that allow us to88

simultaneously estimate remaining capacity and reward, with guarantees that hold uniformly over89

multiple sample sizes; Proposition 3, which shows that we can avoid discount based arguments90

and still return an adaptive policy with value within ε of the optimal policy with high probability91
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while using varying capacity estimates; and, primarily, our algorithm OpStoK whose use to provide92

instructional policies for education software will be discussed in Section 5.93

2 Problem formulation94

In this section, we formally define our problem. Note that since our problem is essentially the95

stochastic knapsack problem, we define it in terms of the knapsack definitions and describe it using96

items, sizes and budgets, rather than questions, time taken and time limits.97

We consider the problem of selecting a subset of items from a set of K items, I , to place into a98

knapsack of capacity B where each item can be played at most once. For each item i ∈ I , let Ci and99

Ri be bounded random variables defined on a joint probability space (Ω,A, P ) which represent the100

size and reward of item i. It is assumed that we can simulate from the generative model of (Ri, Ci)101

for all i ∈ I and we will use lower case ci and ri, to denote realizations of the random variables.102

We assume that the random variables (Ri, Ci) are independent of (Rj , Cj) for all i, j ∈ I , i 6= j.103

Further, it is believed that item sizes and rewards do not change dependent on the other items in the104

knapsack. We assume the problem is non-trivial, in the sense that it is not possible to fit all items in105

the knapsack at once. If we place an item i in the knapsack and the consumption Ci is strictly greater106

than the remaining capacity then we gain no reward for this item. Our final important assumption is107

that there exists some non-decreasing function Ψ(·), satisfying limb→0 Ψ(b) = 0 and Ψ(B) < ∞,108

such that the reward that can be achieved with budget b is upper bounded by Ψ(b).109

Representing the stochastic knapsack problem as a tree requires that all item sizes take discrete values.110

While in this work, it will generally be assumed that this is the case, in some problem instances,111

continuous item sizes need to be discretized. In this case, let v∗ be the optimal value of the best112

policy and let ξ∗ be the corresponding discretization error. Then Ψ(ξ∗) is an upper bound on the113

extra reward that could be gained from the space lost due to discretization. For discrete sizes, we114

assume there are s possible values the random variable can take and that there exists a value θ > 0115

such that Ci ≥ θ for all i ∈ I .116

2.1 Planning trees and policies117

The stochastic knapsack problem can be thought of as a planning tree with the initial empty state as118

the root at level 0. Each node on an even level is an action node and its children represent placing an119

item in the knapsack. The nodes on odd levels are transition nodes with children representing item120

sizes. We define a policy Π as a finite subtree where each action node has at most one child and each121

transition node has s children. The depth of a policy Π, d(Π), is defined as the number of transition122

nodes in any realization of the policy (where each transition node has one child), or equivalently,123

the number of items. Let d∗ = bB/θc be the maximal depth of any policy. For any 1 ≤ d ≤ d∗, the124

number of policies of depth d is125

Nd =

d−1∏
i=0

(K − i)s
i

(1)

where K = |I| is the number of items, and s the number of discrete sizes.126

We define a child policy, Π′, of a policy Π as a policy that follows Π up to depth d(Π) then plays127

additional items and has depth d(Π′) = d(Π) + 1. In this setting, Π is the parent policy of Π′. A128

policy is said to be incomplete if the remaining budget allows for another item to be inserted into the129

knapsack (see Section 4 for a formal definition).130

The value of a policy Π can be defined as the cumulative expected reward obtained by playing items131

according to Π, VΠ =
∑T
t=1E[Rit ] where it is the t-th item chosen by Π. Let P be the set of all132

policies, then define the optimal policy as Π∗ = arg maxΠ∈P VΠ, and corresponding optimal value133

as v∗ = maxΠ∈P VΠ. Our algorithm returns an ε-optimal policy with value v∗ − ε. For any policy134

Π, we define a sample of Π as follows. The first item of any policy is fixed so we take a sample of135

the reward and size from the generative model of that item. We then use Π to tell us which item to136

sample next (based on the size of the previous item) and sample the reward and size of that item. This137

continues until the policy finishes or the cumulative size of the selected items exceeds B.138
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3 High confidence bounds139

In this section, we develop confidence bounds for the value of a policy. Observe that a policy Π140

need not consume all available budget, in fact our algorithm will construct iteratively longer policies141

starting from the shortest policies of playing a single item. Consequently, we are also interested in142

R+
Π , the expected maximal reward that can be obtained after playing according to policy Π until143

all the budget is consumed. Let BΠ be a random variable representing the remaining budget after144

playing according to a policy Π. Our assumptions guarantee that there exists a function Ψ such that145

R+
Π ≤ EΨ(BΠ). We define V +

Π to be the maximal expected value of any continuation of policy Π so146

V +
Π = VΠ +R+

Π ≤ VΠ + EΨ(BΠ).147

From m samples of the reward of policy Π, we estimate the value of Π as VΠm =148

1
m

∑m
j=1

∑d(Π)
d=1 r

(j)
i(d), where r

(j)
i(d) is the reward of item i(d) chosen at depth d of sample j.149

However, our real interest is in the value of V +
Π since we wish to identify the policy with150

greatest reward when continued until the budget is exhausted. From Hoeffding’s inequality,151

P

(
|VΠm1

− V +
Π | > EΨ(BΠ) +

√
Ψ(B)2 log(2/δ)

2m

)
≤ δ. This bound depends on the quantity152

EΨ(BΠ) which is typically not known. Furthermore, our algorithm will work by sampling Ψ(BΠ)153

until we are confident enough that it is small or large. As such, it introduces weak dependencies154

into the sampling process and we need confidence bounds that will hold simultaneously for multiple155

numbers of samples of the remaining capacity, m2. Hence, we work with martingale techniques156

and use Azuma-Hoeffding like bounds [2], similar to the technique used in [14]. Specifically, in157

Lemma 3 (supplementary material), we use Doob’s maximal inequality and a peeling argument to get158

Azuma like bounds for the maximal deviation of the sample mean from the expected value under159

boundedness assumptions. Assuming we sample the reward m1 times and remaining capacity of a160

policy m2 ≤ n times, the following key result holds.161

Proposition 1 The Algorithm BoundValueShare (Algorithm 2) returns confidence bounds,162

L(V +
Π ) = VΠm1

− c1
U(V +

Π ) = VΠm1
+ Ψ(BΠ)m2

+ c1 + c2

which hold with probability 1−δ1−δ2, where c1 =
√

Ψ(B)2 log(2/δ1)
2m1

, c2 = 2Ψ(B)

√
1
m2

log
(

8n
δm2

)
.163

This upper bound depends on n, the maximum number of samples of Ψ(BΠ). For any policy Π, the164

minimum width of a confidence interval of Ψ(BΠ) required by the algorithm BoundValueShare165

when run with precision parameter ε is ε/4. Hence, taking,166

n =

⌈
162Ψ(B)2 log(8/δ)

ε2

⌉
, (2)

ensures that for all policies, 2c2 ≤ ε/4 when m2 = n. As discussed in Section 4, this is a necessary167

condition for the termination of the algorithm.168

4 Algorithm169

The process of sampling the reward of a policy involves sampling item sizes to decide which item170

to play next. We propose to make better use of all available data by using the samples of item sizes171

to calculate U(Ψ(BΠ)). Our algorithm, OpStoK, will then use the tight upper bound U(Ψ(BΠ)) in172

the bound future rewards, U(V +
Π ). We also pool samples of the reward and size of items across173

policies, thus reducing the number of calls to the generative model. OpStoK also benefits from an174

alternative sampling method that reduces sample complexity and ensures that an entire ε-optimal175

policy is returned when the algorithm stops (line 5, Algorithm 1). This is achieved by using the bound176

in Proposition 1 and n as defined in (2).177

In the main algorithm OpStoK (Algorithm 1), is very similar to StOP-K from [16] with the178

key differences appearing in the sampling and construction of confidence bounds, defined in179

BoundValueShare, that ensure the algorithm converges. OpStoK proceed by maintaining a set180
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Algorithm 1: OpStoK (I, δ0,1, δ0,2, ε)

Initialization : ACTIVE = ∅
1 forall the i ∈ I do
2 Πi = policy consisting of just playing item i.
3 d(Πi) = 1

4 δ1,1 =
δ0,1
d∗ N

−1
1 δ1,2 =

δ0,2
d∗ N

−1
1

5 (L(V +
Πi

), U(V +
Πi

)) = BoundValueShare (Πi, δ0,1, δ0,2,S∗, ε)
6 ACTIVE = ACTIVE ∪ {Πi}.
7 end
8 for t = 1, 2, . . . do
9 Π

(1)
t = arg maxΠ∈Active U(V +

Π )

10 Π
(2)
t = arg max

Π∈Active\{Π(1)
t }

U(V +
Π )

11 if L(V +

Π
(1)
t

) + ε ≥ maxΠ∈ACTIVE U(V +
Π ) then

12 Stop: Π∗ = Π
(1)
t ;

13 Πt = Π
(a∗)
t , where a∗ = arg maxa∈{1,2} U(Ψ(B

Π
(a)
t

))

14 ACTIVE = ACTIVE \ {Πt}
15 forall the children Π′ of Πt do
16 d(Π′) = d(Πt) + 1

17 δ1 =
δ0,1
d∗ N

−1
d(Π′) and δ2 =

δ0,2
d∗ N

−1
d(Π′)

18 (L(V +
Π′), U(V +

Π′)) = BoundValueShare (Π′, δ1, δ2,S∗, ε)
19 ACTIVE = ACTIVE ∪ {Π′}
20 end
21 end

of ‘active’ policies. As in [16] and [10], at each time step t, a policy, Πt to expand is chosen by181

comparing the upper confidence bounds of the two best active policies. We select the policy with most182

uncertainty in the bounds since we want to be confident enough in our estimates of the near-optimal183

policies to say that the policy we ultimately select is better (see Figure 1). Once we have selected184

a policy, Πt, if the stopping criteria is not met, we replace Πt in the set of active policies with all185

its children. For each child policy, we use BoundValueShare to bound its reward. In order for all186

our bounds to hold simultaneously with probability greater than 1− δ0,1 − δ0,2, BoundValueShare187

must be called with parameters188

δd,1 =
δ0,1
d∗

N−1
d(Π) and δd,2 =

δ0,2
d∗

N−1
d(Π) (3)

where Nd is the number of policies of depth d as given in (1). Our algorithm, OpStoK is given in189

Algorithm 1. The algorithm relies on BoundValueShare and subroutines, EstimateValue and190

SampleBudget, which sample the reward and budget of policies.191

In BoundValueShare, we use samples of both item size and reward to bound the value of a policy.192

We define upper and lower bounds on the value of any extension of a policy Π as,193

U(V +
Π ) = VΠm1

+ Ψ(BΠ)m2
+ c1 + c2,

L(V +
Π ) = VΠm1

− c1,
with c1 and c2 as in Proposition 1. It is also possible to define upper and lower bounds on Ψ(BΠ) with194

m2 samples and confidence δ2. From this, we can formally define a complete policy as a policy Π with195

U(BΠ) = Ψ(BΠ)m2
+c2 ≤ ε

2 . For complete policies, since there is very little capacity left, it is more196

important to get tight confidence bounds on the value of the policy. Hence, in BoundValueShare,197

we sample the remaining budget policy as much as is necessary to conclude whether the policy is198

complete or not. As soon as we realize we have a complete policy (U(BΠ) ≤ ε/2), we sample the199

value sufficiently to get a confidence interval of width less than ε. Then, when it comes to choosing200

an optimal policy to return, the confidence intervals of all complete policies will be narrow enough201

for this to happen. This is appropriate since, pre-specifying the number of samples may not lead202
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Algorithm 2: BoundValueShare(Π, δ1, δ2, S
∗, ε)

Input :Π: policy; δ1: probability capacity confidence bound fails; δ2: probability reward confidence
bound fails; S∗: observed samples for all items; ε: tolerated approximation error.

Initialization :For all i ∈ I , let Si = S∗i
1 Set m2 = 1 and (ψ1,S) = SampleBudget(Π,S)

/* draw a sample of the remaining budget */

2 Ψ(BΠ)m2
= 1

m2

∑m2

j=1 ψj

3 U(Ψ(BΠ)) = Ψ(BΠ)m2
+ 2Ψ(B)

√
1
m2

log
(

8n
δm2

)
,

L(Ψ(BΠ)) = Ψ(BΠ)m2
− 2Ψ(B)

√
1
m2

log
(

8n
δm2

)
/* calculate upper and lower bounds on the remaining budget */

4 if U(Ψ(BΠ)) ≤ ε
2 then m1 =

⌈
8Ψ(B)2 log(2/δ1)

ε2

⌉
;

5 else if L(Ψ(BΠ)) ≥ ε
4 then

6 m1 =
⌈

1
2

Ψ(B)2 log(2/δ1)
u(Ψ(B))2

⌉
7 else
8 Set m2 = m2 + 1, (ψm2 ,S) = SampleBudget(Π,S) and go back to 2
9 VΠm1

= EstimateValue(Π,m1)

10 L(V +
Π ) = VΠm1

−
√

Ψ(B)2 log(2/δ1)
2m1

11 U(V +
Π ) = VΠm1

+ Ψ(BΠ)m2
+
√

Ψ(B)2 log(2/δ1)
2m1

+ 2Ψ(B)

√
1
m2

log
(

8n
δm2

)
12 return (L(V +

Π ), U(V +
Π ))

to confidence bounds tight enough to select an ε-optimal policy. If a complete policy is chosen as203

Π
(1)
t in OpStoK, for some t, the algorithm will stop and this policy will be returned. For this to204

happen, we also need the stopping criterion to be checked before selecting a policy to expand. Note205

that in BoundValueShare, the reward and remaining budget must be sampled separately as we are206

considering closed-loop planning so the item chosen may depend on the size of the previous item,207

and hence the reward will depend on the instantiated item sizes. In line 6 of BoundValueShare, the208

number of samples of the reward, m1, is defined to ensure that the uncertainty in the estimate of209

VΠ is less than u(Ψ(B)) = min{U(Ψ(BΠ)),Ψ(B)}, since a natural upper bound for the reward is210

Ψ(B). In the other case (when U(Ψ(BΠ) ≤ ε/2), we define it to ensure the confidence bounds are211

tight enough.212

OpStoK, considerably reduces the number of calls to the generative model by creating sets S∗i of213

samples of the reward and size of each item i ∈ I . When it is necessary to sample the reward and size214

of an item for the evaluation of a policy, we sample without replacement from S∗i , until |S∗i | samples215

have been taken. At this point new calls to the generative model are made and the new samples added216

to the sets for use by future policies. We denote by S∗ the collection of all sets S∗i .217

4.1 Analysis218

We state the following result guaranteeing the performance of OpStoK219

Proposition 2 With probability at least (1− δ0,1 − δ0,2), the algorithm OpStoK returns an action220

with value at least v∗ − ε for ε > 0.221
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U(VΠ)

VΠ

L(VΠ)

U(V ∗Π)

v∗

L(V ∗Π)

Figure 1: Example of where just looking at the optimistic policy might fail: If we always play the
optimistic policy, as U(V +

Π∗) ≥ U(V +
Π ), we will always play Π∗ so the confidence bounds on Π will

not shrink. This means that L(V +
Π∗) will never be (epsilon) greater than the best alternative upper

bound so there will not be enough confidence to conclude we have found the best policy.

5 Applications to online education222

Our algorithm as discussed here has been in a mainly theoretical framework. However, we believe that223

it can have serious practical impact in the field of online education. For the problem of determining224

which question to give to a user in a fixed time frame, the tree based structure to question selection225

feels very natural. It allows for pre-requisite exercises to be included very easily, which along with226

producing more pedagogically sound policies will also improve computational efficiency as the227

search space will be reduced at the policy expansion stage. With this in mind, it may also be possible228

to incorporate ideas from the Zone of Proximal Development into the algorithm. Additionally, it229

would be interesting to consider reward which change depending on which questions have previously230

been asked. OpStoK provides an intuitive manner of dealing with the large decision trees that can231

arise when considering the problem of question selection in online education. Our algorithm will232

only evaluate potentially optimal policies and can be run offline (provided a good model of student233

performance and time are available) to produce educational policies that adapt to the remaining time234

and provide a near optimal learning experience for the limited period of time the user has to spend on235

the app or platform.236

6 Conclusion237

In this paper we have presented a new algorithm OpStoK that applies the optimistic planning strategy238

to the stochastic knapsack problem. This algorithm is directly motivated by problem of selecting239

an adaptive sequence of questions to give to a student in an education app. At present, we have240

provided largely theoretical results so in future it would be good to investigate the performance241

of our algorithm in a real education environment. While it is suspected that the algorithm will be242

computationally efficient as it reduces the number of policies that have to be explored, it would be243

interesting to run some experiments both to investigate its practical performance, both in artificial244

environments and the true educational setting for which it was designed.245
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Proof of Proposition 1284

The proof of Proposition 1 relies on the following key resul.t285

Lemma 3 Let {Zm}∞m=1 be a martingale with Zm defined on the filtration Fm, E[Zm] = 0 and286

|Zm − Zm−1| ≤ d for all m where Z0 = 0. Then,287

P

(
∃m ≤ n;

Zm
m
≥ 2d2

√
2

m
log

(
n

m

4

δ

))
≤ δ

Proof: The proof is similar to that of Lemma B.1 in [14] and will make use of the following standard288

results:289

Theorem 4 Doob’s maximal inequality: let Z be a non-negative submartingale. Then for c > 0,290

P

(
sup
k≤n

Zk ≥ c
)
≤ E[Zn]

c
.

Proof: See, for example, [18], Theorem 14.6, page 137. �291

Lemma 5 Let Zn be a martingale such that |Zi − Zi−1| ≤ di for all i with probability 1. Then, for292

λ > 0,293

E[eλZn ] ≤ eλ
2D2

2 ,

where D2 =
∑n
i=1 d

2
i .294

Proof: See the proof of the Azuma-Hoeffding inequality in [2]. �295

Then, for the proof or Lemma 3, we first notice that since {Zm}∞m=1 is a martingale, by Jensen’s296

inequality for conditional expectations, it follows that for any λ > 0,297

E[eλZm |Fm−1] ≥ eλE[Zm|Fm−1] = eλZm−1 .

Hence, for any λ > 0, {eλZm}∞m=1 is a positive sub-martingale so we can apply Doob’s maximal298

inequality (Theorem 4) to get299

P

(
sup
m≤n

Zm ≥ c
)

= P

(
sup
m≤n

eλZm ≥ eλc
)
≤ E[eλZn ]

eλc
.

Then, by Lemma 5, since |Zi − Zi−1| ≤ d for all i, it follows that300

P

(
sup
m≤n

Zm ≥ c
)
≤ E[eλZn ]

eλc
≤ eλ

2D2/2

eλc
= exp

{
λ2D2

2
− λc

}
. (4)

Minimizing the right hand side with respect to λ gives λ̂ = c
D2 and substituting this back into (4) we301

get,302

P

(
sup
m≤n

Zm ≥ c
)
≤ exp

{
− c2

2D2

}
.

Then, since we are considering the case where di = d for all i, D2 = nd2 and so,303

P

(
sup
m≤n

Zm ≥ c
)
≤ exp

{
− c2

2nd2

}
.

Further, if we are interested in P (supk≤m≤n Zm ≥ c), we can redefine the indices’s to get304

P

(
sup

k≤m≤n
Zm ≥ c

)
= P

(
sup

m′≤n−k+1
Zm ≥ c

)
≤ exp

{
− c2

2(n− k + 1)d2

}
. (5)
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We then define εm = 2d
√

1
m log

(
n
m

8
δ

)
and use a peeling argument similar to that in Lemma B.1 of305

[14] to get306

P

(
∃m ≤ n;

Zm
m
≥ εm

)
≤
blog2(n)c+1∑

t=0

P

2t+1−1⋃
m=2t

{
Zm
m
≥ εm

} (by union bound)

≤
blog2(n)c+1∑

t=0

P

2t+1−1⋃
m=2t

{
Zm
m
≥ ε2t+1

} (since εm decreasing in m)

≤
blog2(n)c+1∑

t=0

P

2t+1−1⋃
m=2t

{Zm ≥ 2tε2t+1}

 (as m ≥ 2t)

≤
blog2(n)c+1∑

t=0

exp

{
− (2tε2t+1)2

2t+1d2

}
(from (5))

≤
blog2(n)c+1∑

t=0

2t+1δ

8n
(substituting ε2t+1 )

≤ 2log2(n)+3δ

8n
= δ. (since

k∑
i=1

2i = 2k+1 − 1)

�307

We are now able to prove the following proposition.308

Proposition 6 (Proposition 1 in main text) The Algorithm BoundValueShare (Algorithm 2) returns309

confidence bounds,310

L(VΠ) = VΠm1
−

√
Ψ(B)2 log(2/δ1)

2m1

U(VΠ) = VΠm1
+ Ψ(BΠ)m2

+

√
Ψ(B)2 log(2/δ1)

2m1
+ 2Ψ(B)

√
1

m
log

(
8n

δm

)
which hold with probability 1− δ1 − δ2.311

Proof:312

We then begin by noting that our samples of item size are dependent because we evaluate in each313

iteration a bound based on past samples and we use this bound to decide if we need to continue314

sampling or if we can stop. To model this dependence let us introduce a stopping time τ such that315

τ(ω) = n if our algorithm exits the loop at n. Consider the sequence316

Ψ(BΠ)1∧τ ,Ψ(BΠ)2∧τ , . . .

and define for m ≥ 1317

Mm = (m ∧ τ)(Ψ(BΠ)m∧τ − E[Ψ(BΠ)]) with M0 = 0.

Furthermore, define the filtration Fm = σ(BΠ,1, . . . , BΠ,m) then for m ≥ 1318

E[Mm|Fm−1] = E[Mm|Fm−1, τ ≤ m− 1] + E[Mm|Fm−1, τ > m− 1].

Now319

E[Mm|Fm−1, τ ≤ m− 1] = E[Mm−1|τ ≤ m− 1].
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and due to independence of the samples BΠ,1, . . . , BΠ,m320

E[Mm|Fm−1, τ > m− 1]

= E[m(Ψ(BΠ)m − E[Ψ(BΠ)])|Fm−1, τ > m− 1]

= E

m−1∑
j=1

Ψ(BΠ,j) + Ψ(BΠ,m)−mE[Ψ(BΠ)]

∣∣∣∣Fm−1, τ > m− 1


= (m− 1)E[Ψ(BΠ)m−1 − E[Ψ(BΠ)]|Fm−1, τ > m− 1]

+ E[Ψ(BΠ,m)− E[Ψ(BΠ)]|Fm−1, τ > m− 1]

= E[Mm−1|τ > m− 1] + E[Ψ(BΠ,m)]− E[Ψ(BΠ)] = E[Mm−1|τ > m− 1].

Hence, E[Mm|Fm−1] = Mm−1 and Mm is a martingale with increments |Mm − Mm−1| ≤321

|Ψ(BΠ,m)− E[Ψ(BΠ)]| ≤ Ψ(B). We could apply the Azuma-Hoeffding inequality to gain guaran-322

tees for individual m-values. Alternatively, we can use Lemma 3 to get,323

P

(
sup
m≤n

Mm

m
≥ 2Ψ(B)

√
1

m
log

(
8n

δm

))
≤ δ2.

Using this in conjunction with Azuma bounds on the reward of a policy gives324

VΠm1
− c1 ≤ V +

Π ≤ VΠm1
+ Ψ(BΠ)m2

+ c1 + c2,

where c1 :=
√

Ψ(B)2 log(2/δ1)
2m1

and c2 := 2Ψ(B)
√

1
m log

(
8n
δm

)
and these bounds hold with probabil-325

ity 1− δ1 − δ2.326

�327
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