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ABSTRACT
Online flashcards simulate the traditional experience of having a
question on one side, and an answer overleaf. They are a popular
tool for students to learn or review material. However, building
them from scratch is a time consuming experience for learners. We
present FlashSpace, a neural architecture that aids study prepara-
tion by retrieving relevant flash cards which others students have
created. The contributions of this work are two-fold: (i) we propose
a way to implement an information retrieval system in the absence
of user feedback data, (ii) we leverage peer-learning in the context of
study preparation with flash cards. We report our work on a dataset
of digital flashcards labelled by students with course and chapter
names, where there is an extremely large number of labels which
are also highly noisy. Our approach embeds the text of these labels
and the flash card content in a common space using a character-
level convolutional network. Our empirical evaluation suggests that
FlashSpace outperforms recent general-purpose neural network
models.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Informa-
tion systems→ Information retrieval.

KEYWORDS
peer learning, flash cards, neural networks, text tagging, study
retrieval

1 INTRODUCTION
Flash cards—pairs of short questions with their answers overleaf—
are a popular tool formemorizing facts, and havemeasurable impact
on learning [1]. Online flash cards are a popular alternative to
traditional paper, and have been shown to be as effective as their
physical counterpart [2]. Unfortunately, creating flash cards from
scratch is a time-consuming activity, even in their online format. For
example, students first need to identify useful concepts in a topic
that they are studying. Secondly, they have to formulate factual
questions from scratch which can assist in learning these concepts.
Finally, the students need to type or transcribe the contents of the
flash card. This process has to be repeated multiple times for each
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concept the student wants to study with flash cards. Unfortunately,
it is unclear to what extent these burdensome steps are important
for learning.

In this work we aim to enable peer-learning, in order to aid
students in leveraging the benefits of studying using flash cards
created by other learners. We do this by automating the retrieval
of existing flash cards relevant to the topic of interest. For exam-
ple, our working hypothesis is that a learner studying ‘infectious
diseases’ will find it useful to retrieve flash cards that have been
created by peers that have studied this topic. Unfortunately, the task
of retrieval is complicated by the fact that student-generated labels
are often extremely noisy (eg. a flash card would be labeled ‘Chap-
ter 3’, instead of a meaningful name such as ‘infectious diseases’).
Moreover, unlike traditional collaborative filtering or information
retrieval systems, we do not have user feedback data. Our main
contribution is a neural network architecture that retrieves flash
cards learned from user-generated noisy flash card data.

The rest of this paper is outlined as follows. In § 2, we describe the
dataset of online flash cards that we use. In § 3, we review prior work.
In § 4, we present FlashSpace, a model based on convolutional
networks that is effective for automatic retrieval of flash cards.
In § 5, we evaluate against general-purpose retrieval models, and
provide evidence showing that our model allows retrieval of flash
cards with significantly higher precision.

2 DATASET
We leverage a dataset of millions of flash cards collected by a leading
educational technology firm. These cards are created online by
students, who may decide to categorize them into a particular
course, which can be further organized into topics. On average,
a student creates 147 flash cards, and there are on average 18 topics
per course. Examples of topic and course names can be seen in
Table 1.

Our model needs to be able to learn from flash cards that are only
partially labeled and highly noisy. We argue that a substantial num-
ber of topics have labels that are not useful for a retrieval task.While
the entire dataset covers many courses for many years, we restrict
our experiments to a period of time, and a single subject—biology.
For this, we use the heuristic of filtering courses that contain the
string “bio", which yields 17.5 million flash cards. Altogether, these
cards contain over 296K unique topic labels and 21K unique course
names. For this paper, we have anonymized the dataset and removed
any personal information.

3 RELATION TO PRIORWORK
A variety of successful models have been proposed in the ‘learning
to rank’ [3, 4] and ‘collaborative filtering’ [5] literature—these pre-
suppose a list of items with user feedback, for example, documents
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Table 1: Examples of flash cards

Card front Card back Topic Course

what bacteria does the camp test
allow you to identify?

streptococcus agalactiae lab quiz 8: respiratory tract microbiology 273

large intestine (colon) largest diameter intestine 1.ab-
sorption of water and minerals
don’t absorb water = diarrhea.
2.bacterial fermentation (gas pro-
duction)

ch3 part 2 biology 126

aden(o)- aden(i)- relating to a gland prefixes and suffixes biology 2401

opiod peptide a type of endogenous peptide that
mimics the effects of morphine in
binding to opioid receptors and
producting marked analgesia and
reward

chapter 4: chemical bases of be-
havior

bio. psych.

that have been clicked. But in our case, each set of labels is asso-
ciated with a set of flash cards with no user feedback. In fact, the
online flash card platform does not yet allow for students to retrieve
other users’ flash cards based on topic queries. These learning to
rank models may be useful after deployment of our retrieval system
at scale and a significant amount of user interaction data has been
collected.

As discussed in the previous section, our dataset contains an
extremely large number of labels. There is a rich literature on
‘extreme multi-label learning’, where models are designed to predict
a small subset of labels out of a very large number. These models
include 1-vs-all classifiers [6], local embeddings [7] and tree-based
models[8]. While these models achieve impressive performance, to
our knowledge they are limited to a fixed set of labels. In contrast,
we aim to retrieve flash cards based on free text entered by students,
rather than pick from a fixed set—thus our model must be able to
predict on unseen topic and course labels. Of the unique topic labels
in our dataset, 90.3% are not shared among students, i.e. occur in
the flash cards created by at most one student.

Self-supervised methods are a promising way to address the
cold-start problem of flash card retrieval. They typically work by
projecting the one-hot encodings of words from a document into
an embedding—a smaller dense vector. Documents (in our case flash
cards), and their labels, can be embedded into a common space and
compared by a distance function. Thus, one can choose the label
that is closest to the document.

A recent self-supervised method called fastText [9] reportedly
achieves state-of-the-art performance on word similarity and anal-
ogy tasks and enables inference for words not seen during training
by using sub-word information. On the other hand, self-supervised
methods that incorporate contextual information into word em-
beddings have achieved state-of-the-art performance on language
modeling tasks [10, 11]. Due to time constrants, and since both our
labels and documents are typically short sentence fragments, we
have not evaluated these models. A different line of work includes

Feat2Vec [12], a generic approach for learning self-supervised em-
beddings of features (not necessarily words). It works by iterating
over each feature and treating it as if it were the target variable of
the model (using the remaining features to predict it)—the authors
prove that this is equivalent to optimizing a convex combination
of predictive models with different targets. FlashSpace builds on
the self-supervised literature; it differs from Feat2Vec in two ways
(i) it uses a simpler multi-objective optimization target, and (ii)
the output tasks are manually engineered. In § 5, we compare to
different variations of fastText; however, a limitation of our study
is that we do not compare against Feat2Vec or BERT [11] because
of time-constraints.

4 FLASHSPACE
A retrieval system for flash cards, in order to provide a good user
experience, must run in real time. This means that the model most
be able to perform inference on millions of samples in less than a
second. This can be achieved by requiring that the model factorizes
into ‘query’ and ‘document’ parts which are computed indepen-
dently, and where the output of these parts are combined by a
simple operation, such as a dot product, to form the final prediction.
For models following this design, the vectors representing all the
flash cards can be pre-computed, and in production we only com-
pute the output of the ‘query’ section of the model, and calculate
the dot-products with the stored vectors.

We architect FlashSpace to represent each flash card with four
feature groups—the card front, back, topic and course. We use con-
volutional neural networks (CNNs) to learn representations of each
of these features, since they have been shown to be effective for
various natural language tasks [13–15]. Our motivation is that
character-level CNNs can learn sub-word features, which can also
generalize to unseen labels. This is useful since we have an ex-
tremely large number of labels which are not shared among users.
Due to time constraints, we did not tune the hyper-parameters
but followed recommendations from a previous study on tuning
CNNs [16].
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(b) Network architecture (feature extraction omitted)

Figure 1: FlashSpace architecture

Figure 1 depicts the architecture of the model. To simplify the di-
agram, we separate the feature extraction functions from the rest of
the model. Our model consists of 4 feature extraction functions, one
for each feature, which we denote as - ϕfront ,ϕback,ϕtopic,ϕcourse .
Figure 1a depicts these feature extraction functions, which do not
share parameters among each other, but have a nearly identical
structure—varying only in the length of text that they accept:

• Each text is represented by one-hot encoding the characters
from within an allowed set of 37 (alphabets, numbers and
space) and up to a maximum length of L characters. The
length L is fixed to cover at least 90% of flash cards. Thus
each string is represented as a 37 × L matrix. The strings
are padded with 3 spaces at their start and end, and strings
longer than the L are truncated. L is set to 256 characters for
the front and back, and 64 for the topic and course names.
• The next layer is a set of convolutional filters [17] (also
called feature maps), which are used to extract features from
the characters. A filter is a 2-dimensional matrix which is
applied tom adjacent characters. Thus each of our filters is
a 37 ×m matrix of learned parameters. Filters are applied by
computing the element-wise dot product of the filter along a
sliding window of the entire input. The resulting output for
each filter is a vector of length L−m+1. The ReLU activation,
which is themax (0,x ) function, is applied to each output. In
order to learn both longer and shorter n-gram features, the
network has 1024 filters each of width 4 and 8 characters.
• The 1-max pooling function is applied to the output of each
filter, whichmeanswe take the largest value from the L−m+1
outputs generated by each filter. The pooled outputs from
the two sets of filters is concatenated to form a vector of
length 2048.
• Next we learn higher-level features from these filters with a
dense layer of size 4096 with ReLU activations.
• The next layer is a dropout layer [18], which is a type of
regularization that for each mini-batch randomly drops units
with a specified probability, which we set to 0.2.
• the final embedding for the feature is computed by a dense
layer of size 256 with PReLU [19] activations

Figure 1b shows the rest of the architecture of FlashSpace. Our
goal is to compute an embedding for the ‘query’ section of the
model (topic), and compare its similarity with the embedding of
‘documents’, which we compute in different combinations of the
remaining features as described in § 5.4.

We use multi-objective optimization as shown in shown in Ta-
ble 2: for each pair of features, we take the dot product of their
embedding layers to compute their similarity, followed by a sigmoid
activation function. These embedding layers are calculated from
the text input by the feature extraction functions.

Learning the parameters of probabilistic neural models that pre-
dict a large number of classes can be computationally costly since
it typically requires summing over the entire number of labels on
each gradient descent update. A common work-around is to use
negative sampling or noise contrastive estimation [20]: we first
transform our multi-class classification problem (i.e., which card
to show given a query?) into binary classifications (i.e., are the
query and the card a match?); we then generate random samples
of queries and cards and label them as negative examples. In other
words, a positive example is a flash card observed in the training
dataset, and a negative example is generated by sampling one of
the features. We now explain how we learn the parameters of mul-
tiple tasks using negative sampling. For the negative examples for
each learning task, we randomly sample a value for Feature 2 (see
Table 2) according to its distribution in the training set. Thus, the
number of negative examples thus generated is balanced with the
number of positive examples. The parameters are learned by gradi-
ent descent using the Adam optimizer [21] and we implement the
model using the Tensorflow [22] package.

5 EMPIRICAL RESULTS
In this section we evaluate how well FlashSpace retrieves flash
cards, and benchmark it to baselines. For this, we compare the
performance of our model to TF-IDF, since it is the foundation of
retrieval algorithms in popular search engines such as SOLR [23].
We also compare with fastText, since it is the state of the art for
general-purpose word embeddings. We evaluate these models on
the task of retrieving the correct flash card given its topic label.
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Table 2: Learning Tasks

Feature 1 Feature 2
(randomly sampled) Task output

Card front Topic σ
(
ϕfront ( f ) · ϕtopic (t )

)
Card front Course σ

(
ϕfront ( f ) · ϕcourse (c )

)
Card front Card back σ

(
ϕfront ( f ) · ϕback (b)

)

The retrieval of flash cards by course labels is not studied in this
work, since we have restricted the dataset to only biology courses,
so there is considerably less variety in these labels.

For each model, we calculate a topic (i.e. query) vector, and
a document vector which combines the text of the flash card in
different ways. The similarity (dot-product) between the query
and document vectors is used to rank the flash cards in a held-
out set. This test set is queried only once, and was created by
randomly sampling 1% of the data (∼ 175k cards). However, some
evaluation metrics require negative examples; for this, we created
an extended test set that includes incorrect flash cards for each
topic. We generated these negative examples by sampling flash
cards from the test set.

We evaluate models on two metrics—area under the receiver
operating curve (AUC) and precision at top-K . The AUC requires
negative examples, and thus we use the extended test set, which has
a balanced number of positive and negative samples. For precision
at top-K , if the correct flash card is contained within the first K
cards, the sample receives a score of 1, or 0 if it is not within this
set. Note that the scores calculated here will underestimate the
true relevance for a user, since many flash cards may have relevant
content but different labels.

We run each model for 10 epochs - while the number of epochs
could be optimized with a validation set, we leave this for future
work. We provide details of how we set-up the TF-IDF, fastText
and FlashSpace experiments below. The results are summarized
in Table 3.

5.1 TF-IDF
To assess the effectiveness of straightforward keyword search, we
evaluate ranking flash cards by TF-IDF [24], a popular method
for document retrieval. This means that for a given vocabulary of
terms, we first compute the inverse document frequency (IDF) - the
fraction of documents containing the term, scaled logarithmically.
Then for each query or document, we form a TF-IDF vector by
scaling the counts of each term within the document, by its IDF,
and then normalize the vector. The ‘documents’ are the words of
the front, back and course name concatenated. For a given topic,
we compute the TF-IDF vector and rank the documents by the dot
product with the documents’ TF-IDF vectors. We use the imple-
mentation of TF-IDF in the scikit-learn [25] package. We set the
vocabulary size to 10000, and build the vocabulary and compute
the IDF for each term only using the documents in the training set.

5.2 fastText
We use the implementation of FastText available in the Python
package gensim [26]. This model learns dense representations for
words that incorporate subword information - each word is a sum of
the vectors of its n-grams and a single token representing the whole
word. During training, we concatenate the words from the flash
card front, back, topic and course labels to form a document. The
embedding dimension for the word vectors was set to 256, the same
size as the vectors generated by FlashSpace. The word ‘window’,
which is themaximumdistance between the reference and predicted
word, was set to 21 - this was chosen because 50% of flash cards
have less than 21 tokens. The remaining hyper-parameters are set
to their default values.

For testing, we construct a vector for the topic and a vector for
the flash card ‘document’ which is the text of the front, back and
course name concatenated. To form the document vector, we take
the average of the vectors for all its tokens. The flash cards are then
ranked by similarity of their document vectors to the topic vector
being queried for.

We evaluated 3 variations of fastText:

• The topic and document vectors are formed by taking the
average of all the constituent tokens.
• The model is trained with the topic vector concatenated with
a special character to form a single token. The token vectors
are normalized and averaged for the document
• The constituent token vectors are normalized, and averaged
to form both the document and the topic vectors

The results for these are listed as fastText averaged, fastText
concatenated and fastText normalized respectively, in Table 3. In
each case the model was trained for 10 epochs.

5.3 IDF weighted fastText
We hypothesize that the under-performance on fastText relative
to TF-IDFwas due to the fact that when theword vectors are normal-
ized, all words are weighted equally, which given our highly noisy
dataset is ineffective. On the other hand, using non-normalized
vectors is not effective since the word lengths learned by fastText
are not tuned to the task at hand. To address this issue, we weight
the normalized fastText vectors by the IDF weights computed in
§ 5.1. When a word is not found in the vocabulary of TF-IDF, we
use the average IDF across all words in the vocabulary.

5.4 FlashSpace
As in the case of fastText, we train the model for 10 epochs and
use an embedding size of 256 for each of the features. The output
of ϕtopic is used to generate the query vector, and the flash cards
are ranked by dot-product similarity to this vector. We evaluated
two ways of forming the document vector using our model

• Only the text of the ‘front’ of the flash card, embedded using
ϕf ront , is used as the document vector
• The vectors for front, back and course name of the card are
computed using ϕf ront ,ϕback and ϕcourse respectively, and
averaged to form the document vector.
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Table 3: Evaluation of models. Rounded at two most significant digits

Multiple-word weight AUC Precision at Top-5 Precision at Top-10

Random baseline - 0.50 0.00% 0.00%
BOW TFIDF 0.61 0.28% 0.59%
fastText averaged uniform 0.57 0.00% 0.00%
fastText concatenated uniform 0.58 0.06% 0.01%
fastText normalized uniform 0.57 0.09% 0.20%
fastText TFIDF 0.58 0.39% 0.66%
FlashSpace - Front Vector only - 0.92 0.34% 0.62%
FlashSpace - all features - 0.89 0.52% 1.2%

5.5 Discussion
As shown in Table 3, FlashSpace outperforms both fastText and
TF-IDF by a large margin on all metrics. We notice that precision
at top-K and AUC are not perfectly correlated—this means that a
model that performs best across the whole distribution may not
necessarily have the best performance at the top of the list. Preci-
sion at the first few elements has a far greater impact on the user
experience, so this metric is of greater importance for our use case.
We find that weighting fastText word vectors according to IDF
significantly improves performance at top K.

6 CONCLUSION
We propose FlashSpace, an architecture for representing flash
cards. We use it to bootstrap the implementation of a new retrieval
system in the absence of user-relevance feedback. We compare it
to the time-tested TFIDF baseline, as well to a recent sub-word em-
bedding model. Our experimental results suggest that FlashSpace
can achieve substantially better performance.

Future work may study the reasons why FlashSpace has bet-
ter precision—are the task-specific embeddings important? Or is
it the way it combines multiple words into a single entity? We
are particularly interested in the relationship of FlashSpace with
general-purpose self-supervision frameworks, such as Feat2Vec.
Furthermore, future research may compare against additional base-
lines, specially once user feedback is available. Additionally, it may
be interesting to study issues related to content quality of flash
cards.

Although we focused on flash cards in this study, the task of
bootstrapping a new retrieval system is very prevalent and we hope
it could be interesting to a wider audience. We also hope that the
general structure of our model—convolutional networks learned
through classification of pairwise features—could be useful in other
scenarios where the documents have an extremely large number of
partial or highly noisy labels.
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