
Using Probabilistic Tag Modeling to Improve Recommendations
Beliz U. Gokkaya

Udemy Inc.
600 Harrison St.

San Francisco, California 94107
beliz@alumni.stanford.edu

Larry Wai
Udemy Inc.

600 Harrison St.
San Francisco, California 94107

larry.wai@udemy.com

ABSTRACT
Predicting users’ interest in products is at the core of recommender
systems. �is requires understanding of users’ tastes as well as
the characteristics of the products. In this study, we focus on auto-
matically discovering latent product features from algorithmically
de�ned tags. Tags not only help understand implicit tastes of users
but also facilitate discovery and categorization of products in large
inventories. Product tags also provide structured information to
re�ne the similarity between products in a content-based recom-
mender system. A framework is presented for modeling product
tags using search query data. User search queries are modeled as
an undirected network; nodes represent the search queries and
the similarities between nodes are obtained from user feedback.
�eries that have similar meanings are clustered using community
detection algorithms and the central node in each cluster is used
as a tag. We use a probabilistic model to relate products and users
with these tags. Tag pro�les of products and users are then used
with the recommendation engine. �e framework is employed to
tag courses on Udemy, a global marketplace for learning and teach-
ing online. We demonstrate signi�cant improvements to Udemy’s
recommendations using this novel method.

CCS CONCEPTS
•Information systems→Personalization; Similaritymeasures;
Recommender systems; �ery intent;

KEYWORDS
tag models, community detection, graph modeling, recommender
systems
ACM Reference format:
Beliz U. Gokkaya and Larry Wai. 2017. Using Probabilistic Tag Modeling
to Improve Recommendations. In Proceedings of ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Halifax, Nova Scotia - Canada,
August 13–17, 2017 (KDD’17), 7 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Recommender systems are typically used in marketplaces and e-
commerce sites to surface products that users might be interested
in. �ese systems are built on the premise of understanding user

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD’17, Halifax, Nova Scotia - Canada
© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM. . .$15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

preferences and product characteristics to assist users in discovering
preferred products. �ere are various factors that play a role in
how users assess products and, ideally, these implicit and explicit
factors are represented in recommender systems. �is implies an
understanding of the features describing products as well as users.
To facilitate user experience in discovery of products and improve
user exploratory search, marketplaces and e-commerce sites also
face the challenge of categorizing products in their inventory.

A common way to address these concerns is to mark the prod-
ucts with appropriate keywords, also know as tags. Tags not only
provide e�cient organization products but can also be used with
content-based recommender systems as product features that are
descriptive of user intent. Collaborative tagging, which enables con-
sumers to tag products, is commonly used in the industry [10, 16].
Content-based techniques are employed for automatic tagging of
content [12, 13]. �ese techniques are also used in tagging of mul-
timedia content [18, 22]. However, the aforementioned methods
require a tagging infrastructure as well as consumers willing to
provide feedback.

Probabilistic topic modeling [3] can also be used for tagging.
Latent Dirichlet Allocation provides a model for discovering topics
in text data [4]. Latent topics are discovered from review text
data along with latent rating dimensions to improve predicting
product ratings [17]. Probabilistic topic modeling is combined with
collaborative �ltering to recommend scienti�c articles [24]. It is also
used to improve recommendations in auction marketplaces [6]. [11]
improved recommendation quality by modeling user pro�les using
a mixture of latent topics. However, probabilistic topic modeling
requires a large collection of text data to analyze the prominent
words.

In this paper, we present a statistical framework to algorithmi-
cally generate tags from search logs. Products are modeled with
these tags to be used as latent product features. Product tags provide
structured information to re�ne the similarity between products
in content-based recommender systems. We also model users with
tags. User tags facilitate understanding of not only users’ implicit
taste but also groupings among users.

Our framework is composed of three main parts: 1) Tag Gen-
eration, 2) Product Tag Modeling, and 3) User Tag Modeling. �e
process is illustrated in Figure 1. In the �rst part, we use search
logs to generate the tags. In the second part, we use these tags and
probabilistically model products with these tags. �ird, we employ
a probabilistic approach to model users with tags using historical
data on user interactions with products.

Finally, as illustrated in Figure 1, the product and user tag mod-
els can be used with personalized ranking algorithms to improve
recommender systems. In this paper, we employ the framework

KDD’17, August 13–17, 2017, Halifax, Nova Scotia - Canada Beliz U. Gokkaya and Larry Wai

Figure 1: Overview of the methodology

to improve personalization at Udemy 1, a global marketplace for
learning and teaching online. �e proposed framework is imple-
mented as a part of the recommendation engine to improve course
suggestions to over 15 million students.

In the remaining sections of the paper we describe our frame-
work in detail. We present our experiments using Udemy’s user
and course data. �e results from o�ine and online controlled
experiments show that the proposed framework works well for
personalized recommendations.

1.1 Contributions
Our main contribution is a statistical framework for automatically
discovering product features from algorithmically de�ned tags and
probabilistically associating user behavior to these tags to improve
recommendations. �ese tags put user behavior into context, which
is missing in traditional collaborative �ltering based methods. �ey
provide essential information to be�er understand and characterize
users and products. Furthermore, the framework has the following
advantages:

• �e tags are generated using search log data. We reduce
the noise in the dataset (i.e. remove queries of similar
meaning) by employing clustering techniques and discover
the prominent tags in the data.

• Products in an inventory are automatically labeled using
the generated tags. We employ a probabilistic approach for
modeling products with tags, which results in a ranking of
tags for a given product. �e tag pro�le of products also
enables similarity computations between products, which
is an essential component of a content-based recommender
system.

• Users are associated probabilistically with tags through
their interactions with the products. From a recommender
system perspective, this provides a layer of personalization
at tag level.

Finally, the recommendations provided using this framework are
assessed using o�ine and online controlled experiments at Udemy.

1�is can be found at www.udemy.com.

2 METHODOLOGY
In the following sections, we provide detailed information on the
methodology. �e sections follow the parts of the methodology
outlined in Figure 1.

2.1 Tag Generation
In this step, we are interested in discovering latent dimensions of
users and products. �ese dimensions are named as tags in this
study. Search log data is used as data source. �is data is modeled
as a graph to understand the relationships between search queries.
We then use clustering to eliminate similar words and discover the
tags to be used in recommendations.

2.1.1 Graph Model for Search �eries. Search engines retrieve
products that are relevant to a given search query. User feedback
from search data (e.g., impressions, clicks, purchases) provides
an indication of the relationship between a given query with the
product. It can be assumed that users with the same intent provide
feedback on similar products using similar queries. �e similar
queries represent the users’ goal or the topic of interest. �erefore,
collective feedback of users provides an estimate of the relationships
of search queries.

�e relationship between search queries is modeled using an
undirected search query graph. In this model, nodes of the graph
represent the search queries. If users provide feedback on the same
product using two distinct search queries, then the two queries are
related. When the collective feedback on similar products is fre-
quent, the relationship between the two queries is stronger. �ere-
fore, the weights of the edges in the graph are based on the strength
of the user actions de�ning the similarity between any two pairs of
search queries.

Clicks and purchases are two important sources of user feedback
at e-commerce sites. Users of these sites select among the products
listed by the search engine and clicks if that course is relevant to
their query. Besides clicks, purchases are another source of user
feedback showing intent. A�er clicking on a product through the
search results, if the user further makes a purchase, it is another
indicator of the relationship between the search query and the
product.

www.udemy.com

Using Probabilistic Tag Modeling to Improve Recommendations KDD’17, August 13–17, 2017, Halifax, Nova Scotia - Canada

Using the Jaccard similarity, the similarity of queries qi and qj
is computed using click data (simC (qi ,qj)) as follows:

simC (qi ,qj) =
PC (qi) ∩ PC (qj)

PC (qi) ∪ PC (qj)
(1)

where PC (qi) denotes the set of products clicked following the
query qi and PC (qi) ∩ PC (qj) denotes the intersection of sets of
products clicked using qi and qj , and PC (qi) ∪ PC (qj) denotes the
union of sets of products clicked using qi and qj .

Similarity of queries qi and qj is computed using purchase data
(simP (qi ,qj)) as follows:

simP (qi ,qj) =
PP (qi) ∩ PP (qj)

PP (qi) ∪ PP (qj)
(2)

where PP (qi) denotes the set of products purchased following query
qi .

Equations 1 and 2 are combined in a weighted fashion to compute
similarity as de�ned below:

sim(qi ,qj) = α × simP (qi ,qj) + β × simC (qi ,qj) (3)
where α and β denote the weights of similarity based on purchases
and clicks, respectively and α + β = 1. �ese weights are calibrated
empirically using historical data.

2.1.2 Community Detection on Search �ery Graph. Users who
are interested in the same topic or have the same goal might use
di�erent search queries. Even though these queries have simi-
lar information, they will be represented as di�erent queries. In
this study, search queries are used as tags to describe the products.
Understanding the relationship of search queries and their topics in-
creases the reliability of the tags. Since the underlying relationships
between search queries are revealed by a graph model, clustering
techniques can be employed on the search query graph to identify
the groups of search queries having similar meanings.

Clustering search data has shown to be an e�ective way of �nd-
ing topics in search queries. [2] use clustering on a bipartite graph
to �nd similar queries and similar URLs using user-feedback data
from a search engine. [26] also use a directed bipartite graph to
model click behavior in Yahoo web search logs. Maximal bipartite
cliques are extracted to form clusters of queries which are show-
ing similar user information needs. [25] adopt a query-clustering
approach for �nding similar search queries to identify Frequently
Asked �eries in a search engine. �ey use user feedback and
query content to de�ne the similarity between queries.

Clustering reveals the communities in graphs; within a com-
munity the nodes are densely connected within each other and
have fewer links to other nodes in the graph [9]. �ere are many
algorithms to conduct community detection in graphs and we refer
to [8] for a comprehensive review of these methods.

In this study, we use Walktrap community detection algorithm
[20] since it provides a computationally e�cient method for �nding
the community structure in graphs. �e algorithm runs in O (mn2)
in time and O (n2) in space, where n denotes the number of nodes
andm denotes the number of edges in the graph.

Walktrap algorithm de�nes the distance between two nodes, as
well as two communities, using properties of random walks on
graphs. Probability of going from one node to another is computed

using a Markov chain approach based on the adjacency matrix of
the graph. �e algorithm then employs an agglomerative hierar-
chical clustering approach. In this approach, the graph is initially
partitioned in to n communities and pairwise distances between all
communities are computed. �e most adjacent communities are
merged into one community and distances between communities
are updated. �is is repeated until all nodes are merged into one
community. �e result of the hierarchical clustering is a dendo-
gram. �e dendogram provides a tree-like structure representing
the hierarchy with the clusters.

2.1.3 Tag Extraction using PageRank. Groups of search queries
having similar information are determined using community de-
tection on the search query graph. �ese groups are then analyzed
using link analysis. �e link analysis is required to: 1) Understand
the high level information in these groups. �e most central node in
the group is assumed to represent the high level information within
the group of search queries and it is used as the “tag” of that cluster.
2) Extract relative importance of queries within a group. In map-
ping products to tags, queries are weighted di�erently depending
on signi�cance of the query.

We use PageRank algorithm [19] for link analysis. �e links
within a subgraph, which corresponds to a cluster of search queries,
are analyzed using this algorithm to understand the relative impor-
tance of search queries within a cluster. PageRank scores provide a
measure of node signi�cance by incorporating the degree of con-
nectedness of nodes in the graph. Using the PageRank scores of
each search query, we obtain a ranking for each term. �e search
query having the highest PageRank is deemed most important and
used as the tag of the cluster.

2.2 Product Tag Modeling
�e products are mapped to the auto-generated list of tags using
a probabilistic approach. �e probability of Producti belonging
to Taдj is represented as P (Producti |Taдj) and it is computed as
given below:

P (Producti |Taдj) =∑
Queryk ∈Taдj

P (Producti |Queryk)P (Queryk |Taдj) (4)

�e equation follows directly from the law of total probabil-
ity. We assumed conditional independence of Producti and Taдj
given Queryk . P (Producti |Queryk) denotes the proportion of user
actions on Producti given Queryk , which uses user feedback (i.e.
impressions, clicks, enrollments) from search logs. P (Queryk |Taдj)
denotes the PageRank score of Queryk in cluster Taдj . �e sum-
mation is performed over the queries that are associated with
Taдj since our community detection method does not result in
overlapping communities. �erefore, P (Queryk |Taдj) is zero for
Queryk < Taдj .

�e probabilistic approach has the following advantages:
• For a given product, the main and secondary tags can be

distinguished based on P (Producti |Taдj).
• �e tag pro�le of a product is extracted, which can be used

in product similarity computations as shown in the later
sections.

KDD’17, August 13–17, 2017, Halifax, Nova Scotia - Canada Beliz U. Gokkaya and Larry Wai

2.3 User Tag Modeling
Finally, given the inherent uncertainty in user modeling, we model
user interest in the tags using a probabilistic model. �e probability
thatUserk will be interested inTaдj is represented as P (Taдj |Userk)
and it is computed as given below:

P (Userk |Taдj) =
∑
i
P (Userk |Producti)P (Producti |Taдj) (5)

where P (Producti |Taдj) is computed using Equation 4. P (Userk |Producti)
represents the probability thatUserk will be interested in Producti .
�is is obtained using models that are calibrated using historical
user feedback data from multiple sources. �e summation is per-
formed over all products i .

In order to compute a user’s interest in a given tag, Equation 5
performs a sum over the products the user is interested in weighted
by the products’ relation to the tag. �is approach has the following
advantages:

• For a given user, the main and secondary tags they will be
interested in can be distinguished based on P (Userk |Taдj).

• �e tag pro�le of a user is extracted, which can be used in
user similarity computations.

2.4 Product Similarity
Content based recommendation systems recommend products based
on similarity measures between products [15]. Tags can be used as
product features and we can measure the similarity in product tag
pro�les. �e similarity between Producti and Productj is de�ned
as s (i, j) and it is computed as given in Equation 6.

sim(i, j) = 〈P (Producti |Taд·) ,

P (Productj |Taд·)〉
(6)

where P (Producti |Taд·) denotes the normalized vector of product-
tag relations of Equation 4 and 〈· , ·〉 denotes an inner product.

3 EXPERIMENTS
3.1 Udemy’s Recommender System
Udemy is the world’s online learning marketplace, where 15 mil-
lion+ students are taking courses in everything from programming
to yoga to photography and much more. Each of Udemy’s 45,000+
courses is taught by an expert instructor, and Udemy has built the
marketplace so that students directly impact the kind of content
available, allowing the platform to grow and evolve over time.

At its heart, the recommendation problem at Udemy is to match
the right students with the right course. �e recommender system
aims to �nd the courses that the users will likely to purchase, con-
sume and enjoy from a large selection of courses. Udemy has vast
amount of data describing its users’ discovery and learning expe-
rience. �is data is constantly used to improve the recommender
system to provide a seamless course discovery experience.

Udemy’s homepage is designed to facilitate exploratory search
of courses. An example homepage is shown in Figure 2. �e recom-
mended courses are displayed in a matrix-like layout. �is layout
enables each row, termed as “units” in the following discussions, to
have similar courses in a given topic or theme. �e units as well

as recommended courses within units are tailored based on user
tastes and actions.

Udemy’s recommender system provides a three-step procedure.
�e �rst step is to generate course candidates that will be displayed
in a given unit. We have di�erent algorithms for making this initial
selection of courses powering di�erent unit. For example, for candi-
date course generation, we use course-course similarity values for
the “Because You viewed” and “Because You enrolled” units. Based
on the user’s last clicked and enrolled courses, these units retrieve
candidate courses that are similar to the seed course. In the second
step, we rank the courses within a unit using a personalized model.
�is model provides a score for each course for a given user tar-
geting impression normalized enrollment weighted Net Promoter
Score. �ese scores are used to rank courses within a unit. �e �nal
step is to rank the units to construct the personalized homepage.
We refer to [23] for more information on Udemy’s recommender
system.

3.2 Dataset and Implementation
We apply the aforementioned method to Udemy’s historical user
interaction data. Our dataset spans a period of 2 years and contains
impression level information of 45,000+ courses by 15 million+
students.

We �rst construct the search query graph. Search logs are pre-
processed to remove the queries having typos and are normalized
to remove capitalizations and punctuations. We then select approx-
imately the top 9,000 unique search queries as the nodes of the
graph with approximately 9M edges connecting the nodes. Clicks
and course enrollments are used as the source user feedback to
de�ne the relationships between search queries. In Figure 3, we
show a low level view of the resulting search query graph.

In order to extract groups of queries having similar meanings,
Walktrap community detection is applied to the search query graph.
By optimizing modularity, the method resulted in approximately
1700 clusters. �ese clusters are then analyzed using PageRank
analysis. An example query cluster is shown in Table 1. �e search
query “photography” is determined to have the highest PageRank
score and therefore is used as the tag de�ning this cluster.

In order to model users and products with the tags, we use
historical user interaction data. To illustrate product tag modeling,
a popular course on Udemy is shown in Figure 4. �is course
provides educational content around web development focusing on
design and coding of websites. �e top algorithmically generated
tags that are associated with this course are listed in Table 4. �ese
tags are observed to match closely with the topic of the course.

3.3 O�line Experiments
�e similarity between Udemy’s courses are computed following
Equation 6. We perform o�ine testing to evaluate the performance
of the product similarity computations using historical data. Our
aim in o�ine testing is to make predictions for the courses the
user has not seen yet. We therefore split the dataset into training
and test sets based on the timestamp of user actions. �e training
set consists of user actions made in a 90 day period and the test
set consists of the records belonging to the next day following the

Using Probabilistic Tag Modeling to Improve Recommendations KDD’17, August 13–17, 2017, Halifax, Nova Scotia - Canada

Figure 2: An example homepage at Udemy. �e matrix-like layout enables each row to have similar recommendations in a
given context.

Figure 3: Low level view of the Udemy’s search query graph.
�is graph illustrates the relationship using a subset of the
9,000 search queries.

training set. We denote our prediction for course i by 0.user a as
pa,i and compute it as given below:

pa,i =

∑
j s (i, j)ua, j∑
j s (i, j)

(7)

Table 1: An example search query cluster with PageRank
scores

query PR (query)

photography 0.11
portrait photography 0.08
photography lighting 0.07

�ash photography 0.07
wedding photography 0.07

dslr photography 0.07
landscape photography 0.07

macro photography 0.07
street photography 0.07
night photography 0.06
nude photography 0.06
nikon photography 0.05

newborn photography 0.05
photography free courses 0.04
karl taylor photography 0.04

nikon 0.01

Figure 4: An example course on web development at Udemy

KDD’17, August 13–17, 2017, Halifax, Nova Scotia - Canada Beliz U. Gokkaya and Larry Wai

Table 2: Top tags generated for the course given in Figure 4

Web development
Web

Wordpress
Personal Development

PHP
JavaScript

HTML

where ua, j is the user a’s feedback on product j. �e sum is per-
formed over user a’s feedback on courses similar to i weighted by
the similarity of the item to i [5].

�e predictions, pa,i are then compared with ua,i . Two met-
rics are used to evaluate performance, namely area under the re-
ceiver operating characteristics curve (AUROC) [7] and area under
the precision-recall curve (AUPRC) [21]. �ese metrics are bench-
marked against an item-based collaborative �ltering algorithm im-
plemented using Apache Mahout [1]. In the collaborative �lter-
ing algorithm, similarity is de�ned through Tanimoto coe�cients,
which are calibrated using historical data on course enrollments.
Using the product similarity computations outlined in this paper,
AUROC and AUPRC are improved by 2.1% and 4%, respectively, in
predicting Udemy’s user course enrollments compared to collabo-
rative �ltering predictions.

3.4 Online Experiments
�e algorithm is used to improve the recommendations on Udemy’s
homepage and landing pages. In order to monitor user engage-
ment and the impact on business metrics, we design randomized,
controlled experiments (A/B tests) [14]. We create experimental
variants and power recommendations in each group by di�erent
algorithms. We then randomly assign visitors to each experiment
variant and monitor users’ actions in each group until we can detect
di�erences in the experiment groups with statistical con�dence.
Finally, we quantify the di�erences in experiment metrics, which
include in-session clicks, purchases, revenue and video consump-
tion.

�e �rst online experiment using the algorithm is performed on
the search-based recommendation unit (“Because You Searched”)
in the homepage. �is unit provides recommendations based on
the user’s last searched query. We perform controlled experiments
with a change in the underlying algorithm for this unit. In the
control variant, the unit operates as follows: For a given query, our
search engine is used to retrieve the most relevant course. �is
course is then used as a seed course to our collaborative �ltering
algorithm to retrieve similar courses. In the experimental variant,
we use the search query itself to �nd the tag it belongs. We then
retrieve the most relevant courses for a given tag. �is approach
has the bene�t of using user-feedback for query-course relations
compared to using results directly from the search engine. �is
experiment is run over two months. �e �nal experiment resulted
in the following di�erences in metrics at 95% con�dence:

• In-session revenue from this unit is increased by 170%.
From side-by-side analysis, we hypothesize that this li� is
due to improved relevancy of recommendations.

• Overall sitewide video consumption is increased by 6%,
which points to the higher level of user engagement.

We also perform online experiments using the click-based recom-
mendation unit (“Because You Viewed”) on homepage and landing
pages. �is unit provides recommendations based on the user’s last
clicked course. In the control variant the unit operates as follows:
For a given seed course, item-based collaborative �ltering algorithm
is used to retrieve similar courses. In the experimental variant, we
use the product similarity computations outlined in this paper to
retrieve similar courses to the seed course. �is experiment is run
approximately three months. With 95% con�dence, the �nal experi-
ment results indicated that the overall in-session revenue from this
unit is increased by 13%.

4 CONCLUSION
In this paper, we present a statistical framework for automatically
discovering product features from algorithmically de�ned tags,
probabilistically modeling users and products with these tags and
using the tag modeling to improve recommendation engines. �e
framework is based on a graph model of search queries. �e graph
is analyzed using community detection algorithms to retrieve tags.
�e products and users are then mapped to the tags probabilistically.
�is enables product and user similarity computations, which can
be used with recommender systems.

We use this framework to improve personalized recommenda-
tions at Udemy. �e framework is illustrated using Udemy’s histor-
ical user history data. We then conduct o�ine and online experi-
ments to evaluate the performance of the recommendations. �e
results are promising; online experiments showed signi�cant li�s
on key business metrics.

Our future work will explore on using the framework to power
di�erent parts of the recommendations at Udemy. User tag mod-
eling will be combined with personalized course scores to add a
layer of tag interest to our recommendations. We will also explore
on improving the search query graph using keyword extraction on
course metadata.

5 ACKNOWLEDGEMENTS
�e authors would like to thank Keeyong Han for valuable guidance
and support. Erol Aran, Heval Azizoglu, Cagatay Calli, Melda
Dadandi, James Hou, Okan Kahraman, Ahmet Korkmaz, Ozgen
Muzac, Gulsen Kutluoglu and Ibrahim Tasyurt implemented key
components of the infrastructure. Sara Hooker, Imeh Williams and
Mars Williams contributed detailed feedback.

REFERENCES
[1] Apache Mahout 2017. Apache Mahout, h�p://mahout.apache.org. (2017). h�p:

//mahout.apache.org
[2] Doug Beeferman and Adam Berger. 2000. Agglomerative clustering of a search

engine query log. In Proceedings of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 407–416.

[3] David M Blei and John D La�erty. 2009. Topic models. Text mining: classi�cation,
clustering, and applications 10, 71 (2009), 34.

[4] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet alloca-
tion. Journal of machine Learning research 3, Jan (2003), 993–1022.

[5] Fidel Cacheda, Vı́ctor Carneiro, Diego Fernández, and Vreixo Formoso. 2011.
Comparison of collaborative �ltering algorithms: Limitations of current tech-
niques and proposals for scalable, high-performance recommender systems.
ACM Transactions on the Web (TWEB) 5, 1 (2011), 2.

http://mahout.apache.org
http://mahout.apache.org

Using Probabilistic Tag Modeling to Improve Recommendations KDD’17, August 13–17, 2017, Halifax, Nova Scotia - Canada

[6] Konstantinos Christidis and Gregoris Mentzas. 2013. A topic-based recommender
system for electronic marketplace platforms. Expert Systems with Applications
40, 11 (2013), 4370–4379.

[7] Tom Fawce�. 2006. An introduction to ROC analysis. Pa�ern recognition le�ers
27, 8 (2006), 861–874.

[8] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3
(2010), 75–174.

[9] Michelle Girvan and Mark EJ Newman. 2002. Community structure in social
and biological networks. Proceedings of the national academy of sciences 99, 12
(2002), 7821–7826.

[10] Sco� A Golder and Bernardo A Huberman. 2006. Usage pa�erns of collaborative
tagging systems. Journal of information science 32, 2 (2006), 198–208.

[11] Negar Hariri, Bamshad Mobasher, and Robin Burke. 2013. �ery-driven context
aware recommendation. In Proceedings of the 7th ACM conference on Recommender
systems. ACM, 9–16.

[12] Paul Heymann, Georgia Koutrika, and Hector Garcia-Molina. 2008. Can social
bookmarking improve web search?. In Proceedings of the 2008 International
Conference on Web Search and Data Mining. ACM, 195–206.

[13] Paul Heymann, Daniel Ramage, and Hector Garcia-Molina. 2008. Social tag
prediction. In Proceedings of the 31st annual international ACM SIGIR conference
on Research and development in information retrieval. ACM, 531–538.

[14] Ron Kohavi, Randal M Henne, and Dan Sommer�eld. 2007. Practical guide to
controlled experiments on the web: listen to your customers not to the hippo.
In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 959–967.

[15] Jure Leskovec, Anand Rajaraman, and Je�rey David Ullman. 2014. Mining of
massive datasets. Cambridge University Press.

[16] Cameron Marlow, Mor Naaman, Danah Boyd, and Marc Davis. 2006. HT06,
Tagging Paper, Taxonomy, Flickr, Academic Article, to Read. In Proceedings of the
Seventeenth Conference on Hypertext and Hypermedia (HYPERTEXT ’06). ACM,
New York, NY, USA, 31–40. DOI:h�ps://doi.org/10.1145/1149941.1149949

[17] Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics:
understanding rating dimensions with review text. In Proceedings of the 7th ACM
conference on Recommender systems. ACM, 165–172.

[18] Milind Naphade, John R Smith, Jelena Tesic, Shih-Fu Chang, Winston Hsu,
Lyndon Kennedy, Alexander Hauptmann, and Jon Curtis. 2006. Large-scale
concept ontology for multimedia. IEEE multimedia 13, 3 (2006), 86–91.

[19] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. �e
PageRank citation ranking: bringing order to the web. Stanford InfoLab (1999).

[20] Pascal Pons and Ma�hieu Latapy. 2005. Computing communities in large net-
works using random walks. In International Symposium on Computer and Infor-
mation Sciences. Springer, 284–293.

[21] Badrul M Sarwar, Joseph A Konstan, Al Borchers, Jon Herlocker, Brad Miller,
and John Riedl. 1998. Using �ltering agents to improve prediction quality in the
grouplens research collaborative �ltering system. In Proceedings of the 1998 ACM
conference on Computer supported cooperative work. ACM, 345–354.

[22] Börkur Sigurbjörnsson and Roelof Van Zwol. 2008. Flickr tag recommendation
based on collective knowledge. In Proceedings of the 17th international conference
on World Wide Web. ACM, 327–336.

[23] Larry Wai. 2016. Data Science at Udemy: Agile Experimentation with Algorithms.
arXiv preprint arXiv:1602.05142 (2016).

[24] Chong Wang and David M Blei. 2011. Collaborative topic modeling for recom-
mending scienti�c articles. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 448–456.

[25] Ji-Rong Wen, Jian-Yun Nie, and Hong-Jiang Zhang. 2001. Clustering user queries
of a search engine. In Proceedings of the 10th international conference on World
Wide Web. acm, 162–168.

[26] Jeonghee Yi and Farzin Maghoul. 2009. �ery clustering using click-through
graph. In Proceedings of the 18th international conference onWorld wide web. ACM,
1055–1056.

https://doi.org/10.1145/1149941.1149949

	Abstract
	1 Introduction
	1.1 Contributions

	2 Methodology
	2.1 Tag Generation
	2.2 Product Tag Modeling
	2.3 User Tag Modeling
	2.4 Product Similarity

	3 Experiments
	3.1 Udemy's Recommender System
	3.2 Dataset and Implementation
	3.3 Offline Experiments
	3.4 Online Experiments

	4 Conclusion
	5 Acknowledgements
	References

