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ABSTRACT
An enduring issue in higher education is student retention and
timely graduation. Early-warning and degree planning systems
have been identified as a key approach to tackle this problem.
Accurately predicting a student’s performance can help recom-
mend degree pathways for students and identify students at-risk
of dropping from their program of study. Various approaches have
been developed for predicting students’ next-term grades. Recently,
course-specific approaches based on linear regression and matrix
factorization have been proposed, which achieved better perfor-
mance than existing approaches based on traditional methods. To
predict a student’s grade, course-specific approaches utilize the
student’s grades from courses taken prior to that course. However,
there are a lot of factors other than student’s historical grades that
influence his/her performance, such as the difficulty of the courses,
the quality and teaching style of the instructor, the academic level
of the students when taking the courses and so on. In addition
to that, course-specific models show poor performance if the pro-
gram has flexible degree plans i.e., several electives. In this paper,
we propose a course-specific regression model enriched with fea-
tures about students, courses and instructors. Our proposed models
were evaluated on a dataset from a public university for depart-
ments with varying flexibility. The experimental results showed
that incorporating content features can boost the performance of
the course-specific model. For some degree programs with high
flexibility, our experiments showed that predicting the grades with
only content features can give better results.
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1 INTRODUCTION
The past few years have seen the rise of technologies that capture
and leverage massive quantities of education-related data to deliver
and improve all levels of learning and education in our society. The
Department of Education Report [4] specifically highlighted the
current successes of learning analytics and critical need for further
research focused on development of robust applications that lead to
better student outcomes, improved instructor pedagogy, enhanced
curriculum and higher graduation rates for all students irrespective
of their backgrounds from kindergarten through college. Currently,
higher education institutions face a critical challenge of retaining
students and ensuring their successful graduation [16]. Towards
this end, several universities seek to deploy accurate and effective
degree planners that assist students in choosing academic pathways
towards a successful and timely graduation; and early-warning
systems that aid academic advisors in identifying students who
are at the risk of failing or dropping out of a program for timely
intervention. In this paper we present solutions that analyze in
a systematic and careful manner, the large and diverse type of
education-related data collected at George Mason University with
the objective of assisting students to make informed decisions about
their future course selections. Specifically, we develop methods
that perform next-term grade prediction i.e., predict the grade for
students in future courses that they have not taken yet.

In this work, based on course-specific models we proposed a
model which not only uses the grades of prior courses but also differ-
ent kinds of content features. The course-specific models have been
applied to predict student’s next-term grades by using grades of
prior courses, which better addresses problems associated with the
reliable estimation of the low-rank models [14]. However, course-
specific models that use the grades of prior courses can only capture
the information of student’s knowledge evolution. There are some
other factors that can influence student’s grades, such as his/her
academic level when taking a certain course, instructor’s teaching
quality and courses’ difficulty. In addition, course-specific mod-
els also suffer from inaccurate prediction if the degree program is
flexible (i.e., has several electives). To solve this problem we incor-
porated content features, which can capture diverse information
about students, courses and instructors.

We evaluated our proposed method on a dataset from George
Mason University collected from Fall 2009 to Spring 2016. The
results showed that our proposed method outperformed competing
methods to some degree. Another conclusion was that when the
prior-course information was sparse, the included content features
were more likely to help.
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The paper is organized as follows. Section 2 investigates the re-
lated work in the area of student’s performance prediction. Section
3 describes the notations we used in the paper. Section 4 discusses
our proposed method and other comparison methods. Section 5 is
about protocol. In Section 6, we presents our experimental results
and analysis. And the last section gives some conclusions and future
direction.

2 RELATEDWORK
In recent years, data mining and machine learning techniques have
been applied to improve educational quality including areas related
to learning and content analytics [9, 10], knowledge tracing [6, 20],
learning material enhancement [1] and early warning systems [3,
11]. Based on the scope of this paper, we only review approaches
for next-term student grade prediction.

Knowing student’s performance in advance can help instructors
catch at-risk students early and advise them in choosing appropri-
ate courses that fit their current knowledge state better. As such,
several methods have bee developed to tackle the next term predic-
tion problem. Most of the methods are inspired from recommender
system literature [17, 18], such as matrix factorization [14] and
collaborative filtering [5, 19]. Approaches based on standard clas-
sification approaches such as random forests trees have also been
applied [2, 18]. A majority of the algorithms proposed are “one-size-
fits-all“, namely, trying to model all the students with one model.
To model students with different characteristics, personalized grade
prediction approaches have been proposed [12, 15]. Using features
mined from student interaction with learning management systems,
Elbadrawy et. al. proposed a personalized mutli-regression model
[7] for in-class grade prediction.

Recently course-specific models proposed by Polyzou et. al. [14]
achieved better prediction accuracy than existing approaches, as-
suming that students acquire knowledge in an cumulative manner.
Course-specific models are cumulative, in the sense that to predict a
student’s grade in a target course, the students’ grades from courses
taken prior to the target course are utilized.

However, one of the drawbacks of course-specific models is that
they show poor performance if the degree program is flexible [14].
In addition, the grades of the prior courses can not completely cap-
ture all the factors that affect students’ performance. In this paper,
based on course-specific models, we proposed a hybrid model to pre-
dict students’ next-term performance by taking some informative
factors into consideration.

3 PROBLEM FORMULATION AND
NOTATIONS

Formally, we assume that we have records of n students and m
courses, comprising a n ×m sparse grade matrix G, where дs,c ∈
[0 − 4] is the grade a student s earned in course c . The objective of
next-term grade prediction problem is to estimate the grade д̂s,c ,
a student s will achieve in course c in the next term. Besides the
grade matrix G, we have information that can be associated with
the student (e.g., academic level, previous GPA, major) and course
offering (e.g., discipline, course level, prior courses frequently taken,
instructor, etc) that can be combined to extract a feature vector per
dyad. We denote this feature vector as x of p dimensions. As a

convention, bold uppercase letters are used to represent matrices
(e.g., X) and bold lowercase letters represents vectors (e.g., x).

4 METHODS
4.1 Course-Specific Regression (Prior Courses)
Polyzou et.al. [14] motivate the use of course-specific regression
models that leverage the sequential structure of undergraduate
degree programs. These regression models assume that the perfor-
mance of a student in a future course is strongly correlated with
past performance on a subset of courses taken earlier. Specifically,
this regression model estimates the grades for a future class as a
sparse linear combination of grades obtained on prior courses. For
a course c the grades that students obtained on courses taken prior
to c are extracted from the grade matrix G, and denoted by Gpr

c .
Each row of this matrix corresponds to students that have taken
the course c . Assume that nc students have taken the course c so far
andmc represents the union set of courses taken by students prior
to c , then the dimensions of Gpr

c is nc ×mc . g:,c is the vector rep-
resenting the grades that students obtained for course c . We learn
the parameters of this Course-Specific Regression (CSR) model by
solving the least square regression problem enforcing ℓ1 and ℓ2
norms. The optimization problem is given below:

minimize | |1wc,0 + G
pr
c wpr

c − g:,c | |
2
2︸                             ︷︷                             ︸

loss

+ λ1 | |w
pr
c | |

2
2︸      ︷︷      ︸

ℓ2

+ λ2 | |w
pr
c | |1︸      ︷︷      ︸

ℓ1
(1)

where 1 is a vector of ones of dimension nc , w
pr
c ∈ R

mc denotes
the weight vectors associated with each course c and wc,0 is the
bias term. The ℓ1 norm ensures sparsity and ℓ2 avoids overfitting.

Having learned the weight vectors and bias terms, the grade
estimate for a student s enrolling in course c is given by:

д̂s,c = wc,0 + xTs,cw
pr
c (2)

where xs,c ∈ Rmc is a feature vector representing the grades on
prior courses that the student has taken so far. We denote this
Course-Specific Regression model with Prior Courses as CSRPC.

In this approach, prior to estimating the model using equation
1, we row-centered each row of matrix Gpr

c and g:,c , which is
done by subtracting the GPA of corresponding students from the
non-zero entries in each row of Gpr

c and g:,c [14]. We found that
row-centering gives better performance by mitigating the negative
influence of missing grades from prior courses.

4.2 Course-Specific Regression (Content
Features)

The CSRPC model described above is able to provide accurate es-
timates of student performance provided a course has sufficient
number of prior courses. We seek to extract key features associ-
ated with students and courses and incorporate them within the
prediction formulation. Based on course-specific idea, instead of
training one global model for all the courses, we propose to train
independent course-specific regression models with content fea-
tures. We refer to this model by CSRCF. In terms of formulation, the
proposed CSRCF is similar to CSRPC except that the feature vector
is a composite of student, course and instructor-related features as
described in Section 4.2.1. We denote the weight vector learned by
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this formulation as wf
c and the feature vectors xs,c ∈ Rp where

p is the total number of features. The predicted grade estimate is
then given by:

д̂s,c = wc,0 + xTs,cw
f
c (3)

The CSRCF model is estimated in a similar manner as CSRPC and
given by:

minimize | |1wc,0 + X
f
cw

f
c − g:,c | |

2
2︸                           ︷︷                           ︸

loss

+ λ1 | |w
f
c | |

2
2︸     ︷︷     ︸

ℓ2

+ λ2 | |w
f
c | |1︸     ︷︷     ︸

ℓ1

(4)

where Xf
c is a matrix of stacked feature vectors from the different

students who have taken the course c in the past. Each row of this
matrix is a feature vector for a student enrolled in the course c .

4.2.1 Content features. Student-related features include their
demographic data, such as their age, race, gender, high school GPA
and so on. For each term, we have the GPA of the student from
the previous term and the accumulative GPA as of last term. As
students might take courses from other departments which has less
influence than those from their own departments, we can extract
GPA of courses only from their own departments. When taking a
course, different students might come from different academic level,
therefore, it might be beneficial to incorporating their academic
level into the model.

The features relating to a course include its discipline, the credit
hours it’s worth of and its course level (e.g. 100, 200, 300, 400-level).
As the difficulty of a course can influence the performance of the
students, it’s helpful to include the course difficulty information
into the model. We use the GPA of the course from last term to
represent the difficulty of the course.

As the factors from instructors can also influence the perfor-
mance of the students, we extract content features about the in-
structors which include his rank, tenure status and the GPA of the
courses he has taught.

We one-hot-encoded categorical features inXf
c and standardized

the continuous features.

4.3 Hybrid Model
We also combine the feature vectors Xf

c and Gpr
c obtained from the

student-course content and prior grades and learn weight vectors
per course, respectively. We refer to this hybrid model as CSRHY
and learn a course-specific regression model as discussed above.

4.4 Baseline Methods
In the experiments, we compare the proposed methods with the
following competing approaches.

(1) Matrix Factorization (MF): The use of MF for grade pre-
diction is based on the assumption that the students and
courses’ knowledge space can be jointly represented in
low-dimensional latent feature space [14]. Each compo-
nent in the latent feature space corresponds to knowledge
components. The grade of student s in a future course c is
estimated as:

д̂s,c = b0 + bs + bc + ⟨ps , qc ⟩ (5)

Table 1: Information about the different majors

Major #Students #Courses #Grades Flexibility
CS 988 53 21,880 0.283
ECE 396 69 161,70 0.272
BIOL 1629 105 20,602 0.339
PSYC 1114 60 14,851 0.429

where b0, bs and bc are the global bias, student bias and
course bias respectively and ps , qc are the latent vectors
representing student s and course c .

(2) Course-specific Matrix Factorization (CSMF): CSMF is simi-
lar to MF except that the grade matrix Gc for CSMF only
includes the grades of students taking the course and their
grades of courses taken prior to the course we are going
to predict [14].

(3) BiasOnly (BO): BiasOnly method only takes into consid-
eration student’s bias, course’s bias and global bias which
are estimated using Equation 5 by setting the dimension
of the latent factors as 0 [14].

5 EXPERIMENTAL PROTOCOL
5.1 Dataset description and preprocessing
We evaluated our proposed methods on dataset obtained from four
departments: (i) Computer Science (CS), (ii) Electrical and Computer
Engineering (ECE), (iii) Biology (BIOL) and Psychology (PSYCH) at
George Mason University. The data was collected from Fall 2009
to Spring 2016. According to the University Catalog [8], we kept
the courses that were required by the degree program and electives
within the same major. The statistics of the four majors are shown
in Table 1.

We removed any courses whose grades were pass/fail. If a course
was taken more than once by a student, only the last grade was kept.
To form the test and training dataset, we use the data extracted
from last term (i.e., Spring 2016) as test dataset and data from all
the terms before Spring 2016 as training. The training dataset was
split into 80/20, of which 80% was training data, 20% was validation
data.

As the flexibility of a degree program can influence the course-
specific models’ performance, a flexible parameter associated with
each department is computed according to [13]. The major’s flexi-
bility is the average course flexibility over all courses belonging to
that major. We computed the flexibility of a course as one minus
the average Jaccard coefficient of the courses that were taken by
the students that took c prior to taking this course. The flexibility
of a course will be low if the students have taken very similar prior
courses and high otherwise.

5.2 Evaluation Metrics
To assess the performance of the models, we used three kinds of
metrics, namely mean absolute error (MAE), root mean squared
error (RMSE) and tick error. MAE and RMSE are computed by
pooling together all the grades across all the courses. As each course
has different number of students, we also computed the average
MAE and RMSE denoted as AvgMAE and AvgRMSE, respectively,
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Table 2: AverageMAE and MAE of different methods

Method AvgMAE MAE
CS ECE BIOL PSYC CS ECE BIOL PSYC

BO 0.7551 0.6965 0.5755 0.5390 0.7359 0.7285 0.5853 0.5882
MF 0.7866 0.8346 0.6112 0.5182 0.8150 0.8447 0.6169 0.5648
CSMF 0.7647 0.6936 0.5355 0.4961 0.7609 0.7015 0.5579 0.5240
CSRPC 0.6870 0.6451 0.5421 0.4928 0.6805 0.6739 0.5372 0.4933
CSRCF 0.6929 0.6599 0.4673 0.4836 0.7183 0.6775 0.4769 0.4743
CSRHY 0.6606 0.6289 0.4987 0.4858 0.6693 0.6630 0.5057 0.4859

Table 3: AverageRMSE and RMSE of different methods

Method AvgRMSE RMSE
CS ECE BIOL PSYC CS ECE BIOL PSYC

BO 0.9443 0.8911 0.7372 0.7148 0.9622 0.9748 0.7794 0.7829
MF 1.0228 1.0296 0.7849 0.6998 1.0879 1.1104 0.8173 0.8035
CSMF 0.9921 0.8738 0.7345 0.6840 1.0126 0.9623 0.8045 0.7372
CSRPC 0.8982 0.8570 0.7488 0.7092 0.9288 0.9699 0.7943 0.7348
CSRCF 0.8943 0.8470 0.6464 0.6588 0.9539 0.9680 0.7205 0.6732
CSRHY 0.8773 0.8380 0.7200 0.7058 0.9199 0.9542 0.7679 0.7283

Table 4: Prediction performance of different methods based on Ticks

#Ticks Method CS ECE BIOL PSYC

Percentage
of Grades
predicted
with no error

BO 15.02 18.58 19.41 19.75
MF 13.04 9.84 19.95 23.89
CSMF 15.22 18.58 24.53 23.25
CSRPC 19.57 20.77 28.84 34.08
CSRCF 13.44 16.39 28.03 27.39
CSRHY 19.76 22.40 30.73 35.35

Percentage
of grades
predicted
with an error
of at most
one tick

BO 44.27 44.26 55.26 53.82
MF 42.29 39.34 51.75 54.46
CSMF 43.08 40.44 58.76 61.78
CSRPC 48.22 55.19 62.80 61.15
CSRCF 44.66 51.37 70.89 64.97
CSRHY 49.80 55.19 67.38 61.78

Percentage
of grades
predicted
with an error
of at most
two ticks

BO 69.17 66.67 77.63 75.80
MF 64.82 63.38 76.82 77.07
CSMF 67.59 72.68 82.21 78.66
CSRPC 74.31 73.22 81.40 79.62
CSRCF 73.52 75.96 87.87 83.44
CSRHY 75.10 74.32 82.75 78.66

which are computed by averaging the MAE and RMSE for each
course.

MAE, RMSE, AvgMAE and AvgRMSE are all averaged errors
between the predicted grades and the actual grades. To gain a
better insight into the quality of the predictions, we also report the
tick error as done in [13, 14]. The grading system of George Mason
University has 11 letter grades (A+, A, A-, B+, B, B-, C+, C, C-, D,
F) which correspond to (4, 4, 3.67, 3.33, 3, 2.67, 2.33, 2, 1.67, 1, 0).
We refer to the difference between two successive letter grades as
a tick. The performance of a model is assessed based on how many
ticks away the predicted grade is from the actual grade. We first

converted the predicted grades into their closest letter grades and
then computed the percentages of each of the x ticks [13, 14].

6 RESULTS AND DISCUSSION
Table 2 and 3 shows the comparative performance of different meth-
ods on four different departments by using metrics average MAE,
MAE and average RMSE, RMSE. Generally, all course-specific mod-
els outperform non-course-specific models, which means focusing
on a course-specific subset of data can result in better performance.
For departments with less flexibility such as Computer Science and
Electrical Engineering, we observe that the hybrid model has the
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(a) True vs. Predicted Grades for BO (b) True vs. Predicted Grades for CSRPC

(c) True vs. Predicted Grades for CSRCF (d) True vs. Predicted Grades for CSRHY

Figure 1: True vs. Predicted Grades for BiasOnly and Course-specific Models

best performance. Thus incorporating content features into course-
specific model further improves its performance. The model with
only grades of prior courses performs better than model with only
content features. For departments with high flexibility such as Biol-
ogy and Psychology, the model with only content features shows
the best performance, which suggests that if a department has a flex-
ible degree program, content features might be more informative
than the grades of prior courses.

To gain deeper insights into the types of errors made by different
methods, Table 4 reports the percentage of grades predicted with no
error, with an error of at most one tick and with an error of at most
two ticks. Comparing the performance achieved by the methods
we notice that the course-specific models have relatively better
performance than non-specific approaches. In terms of the exact
prediction (i.e., no error), the hybridmodel has the best performance.
For departments with rigid degree program, such as Computer
Science and Electrical Engineering, the hybrid model has better
performance than other methods. If minor errors are allowed (i.e.,

one or two ticks), for flexible departments, model with only content
features gives better performance.

The distribution of true (ground truth) and predicted grades are
also plotted in Figures 1a, 1b, 1c and 1d for BiasOnly, CSRPC, CSRCF
and CSRHY, respectively. Each row of the figure represents the
ratio of the predicted grades. For example, in Figure 1b the bottom
row represents that a high proportion of A’s are predicted as such.
We see that BiasOnly tends to smooth the predicted grades i.e., it
predict most of the grades around the average GPA (around B-).
However, for high grades most of the predicted grades are around
the true grades in course-specific models and for lower grades all
the models tend to over predict.

Table 5 shows the detailed statistics of the courses from two
departments CS and PSYC with strict and flexible degree program,
respectively, and the errors (RMSE) made by three course-specific
regression models. From Table 5, we can see that if the grades in test
set have high standard deviation or higher than that of training set,
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Table 5: Per course statistics and errors

Course #training #testing density Mn Tr StD Tr Mn Te StD Te CSRPC CSRCF CSRHY

CS-2xx 322 76 0.766 2.640 1.249 2.548 1.455 1.179 1.226 1.176
CS-2xx 303 66 0.623 2.915 1.062 2.899 0.941 0.686 0.755 0.735
CS-3xx 138 19 0.748 3.049 0.803 3.158 0.597 0.463 0.417 0.434
CS-3xx 285 62 0.638 2.634 1.155 2.694 1.236 1.037 1.156 1.037
CS-3xx 181 41 0.711 3.063 0.779 3.041 0.617 0.527 0.465 0.539
CS-3xx 42 13 0.802 3.104 1.140 3.360 0.591 0.748 0.668 0.752
CS-3xx 189 35 0.754 2.783 1.032 2.657 1.053 0.876 0.949 0.876
CS-3xx 19 8 0.885 2.719 1.072 2.959 1.368 1.152 1.035 1.253
CS-3xx 156 29 0.768 3.088 0.762 2.897 1.175 1.072 1.045 1.066
CS-4xx 92 8 0.867 2.859 1.103 2.917 1.090 1.006 1.119 1.006
CS-4xx 29 15 0.868 2.426 1.181 2.311 1.341 1.243 0.972 0.830
CS-4xx 35 7 0.378 2.667 0.983 2.713 0.629 0.711 0.609 0.736
CS-4xx 105 36 0.909 3.137 0.810 3.297 0.965 0.951 0.913 0.994
CS-4xx 43 10 0.912 2.923 1.001 2.567 1.383 1.072 1.063 1.042
CS-4xx 46 19 0.896 2.725 1.111 1.983 1.111 1.090 1.081 1.143
CS-4xx 32 8 0.897 3.083 0.866 3.041 1.207 0.964 1.106 0.964
CS-4xx 115 32 0.868 3.018 0.914 3.229 0.659 0.655 0.643 0.655
CS-4xx 26 22 0.868 3.525 0.668 3.333 0.841 0.669 0.870 0.610
PSYC-2xx 195 24 0.608 3.165 0.802 3.639 0.429 0.709 0.604 0.694
PSYC-2xx 204 23 0.635 3.144 0.726 3.435 0.788 0.678 0.746 0.678
PSYC-3xx 247 23 0.670 3.263 0.813 3.580 0.654 0.796 0.656 0.799
PSYC-3xx 223 24 0.724 3.262 0.870 3.390 0.875 0.759 0.578 0.756
PSYC-3xx 44 5 0.825 3.212 0.943 3.600 0.490 0.507 0.829 0.653
PSYC-3xx 112 8 0.613 3.310 0.858 3.292 0.715 0.878 0.726 0.873
PSYC-3xx 86 7 0.558 3.535 0.758 3.620 0.516 0.696 0.467 0.678
PSYC-3xx 258 21 0.586 3.263 0.936 3.778 0.428 0.760 0.801 0.728
PSYC-3xx 69 14 0.718 3.251 0.667 3.357 0.672 0.481 0.475 0.467
PSYC-3xx 227 26 0.687 3.333 0.728 3.270 0.883 0.776 0.729 0.776
PSYC-3xx 94 9 0.723 3.394 0.617 3.630 0.618 0.600 0.521 0.602
PSYC-3xx 52 6 0.714 3.378 0.911 3.280 1.027 0.978 1.033 0.956
PSYC-3xx 216 22 0.731 3.048 0.951 2.803 1.013 0.940 0.642 0.940
PSYC-3xx 66 12 0.710 3.525 0.802 3.168 0.977 1.020 0.865 1.021
PSYC-3xx 121 18 0.715 3.488 0.705 3.371 0.745 0.692 0.627 0.700
PSYC-4xx 182 21 0.672 3.564 0.716 3.540 0.442 0.549 0.346 0.550
PSYC-4xx 48 5 0.789 3.771 0.409 4.000 0.000 0.424 0.253 0.424
PSYC-4xx 105 30 0.661 3.445 0.884 3.778 0.489 0.588 0.627 0.590
PSYC-4xx 34 12 0.798 3.657 0.521 3.112 0.736 0.809 0.893 0.802

The second and third column stand for the number of training and testing instances, respectively
density means the density of the prior course matrix
Tr train, Te test, Mn mean, StD standard deviation

the prediction error is high. The reason might be that the course-
specific models used in this work and previous works are linear.
In the future, we would like to explore non-linear course-specific
models. We also noticed that the content features don’t improve
the performance on some courses. The reason might be that the
flexibility of these courses are low so that the content features don’t
help much for these courses and the grades of the prior courses can
reflect students’ knowledge evolution well.

7 CONCLUSIONS
In this paper, we proposed a hybrid model to further improve the
performance of the course-specific models. The performance of
course-specific models are greatly influenced by the flexibility of
the degree program. For departments with less flexible degree pro-
gram, the hybrid model achieves better performance than tradi-
tional course-specific models. However, for departments with more
flexible degree program, the grades of prior courses are less infor-
mative than content features, therefore, it is more appropriate to
include only content features.
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