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Abstract

Adaptive systems teach and adapt to humans;
their promise is to improve education by min-
imizing the subset of items presented to stu-
dents while maximizing student outcomes (Cen
et al., 2007). In this context, items are questions,
problems, or tasks that can be graded individu-
ally. The adaptive tutoring community has tac-
itly adopted conventions for evaluating tutoring
systems (Dhanani et al., 2014) by using classifi-
cation evaluation metrics that assess the student
model component— student models are the sub-
systems that forecast whether a learner will an-
swer the next item correctly.

Unfortunately, it is not clear how intuitive clas-
sification metrics are for practitioners with little
machine learning background. Moreover, our ex-
periments on real and synthetic data reveal that it
is possible to have student models that are very
predictive (as measured by traditional classifica-
tion metrics), yet provide little to no value to the
learner. Additionally, when we compare alterna-
tive tutoring systems with classification metrics,
we discover that they may favor tutoring systems
that require higher student effort with no evi-
dence that students are learning more. That is,
when comparing two alternative systems, classi-
fication metrics may prefer a suboptimal system.

We recently proposed Learner Effort-Outcomes
Paradigm (Leopard) for automatic evaluation of
adaptive tutoring (González-Brenes & Huang,
2015). Leopard extends on prior work on alter-
natives to classification evaluation metrics (Lee
& Brunskill, 2012). At its core, Leopard quan-
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tifies both the effort and outcomes of students in
adaptive tutoring. Even though these metrics are
novel by itself, our contribution is approximating
both without a randomized control trial.

In this talk, we will describe our recently pub-
lished results on meta-evaluating Leopard and
conventional classification metrics. Addition-
ally, we will present preliminary results of fram-
ing the value of an educational intervention as
multi-objective programming. We argue that
human-propelled machine learning, and educa-
tional technology in particular, aim to optimize
the Pareto boundary of effort and outcomes of
humans.
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