# ML for Education NIPS Workshop 12/10/2016

# ML Approaches for Learning Analytics: Collaborative Filtering Or Regression With Experts?

Kangwook Lee







Joint work w/ Jichan Chung, Yeongmin Cha, and Changho Suh



# **Learning Analytics**

#### Data Collection



### Data Analysis



# Optimize Learning











- Rule-based
- Machine Learning





- Recommendation
- Personalization
- Content Design
- ...

# **Learning Analytics**

#### **Data Collection**



### Data Analysis



# Optimize Learning











- Rule-based
- Machine Learning





- Recommendation
- Personalization
- Content Design
- ..





# Response Model & Learning

[Bergner et al., 2012], [Lan, Studer, Baraniuk, 2014]



$$L \in [0,1]^{n \times r}$$
$$R \in [0,1]^{m \times r}$$

$$X = L \times R^T$$

 $P = \phi(X)$ 

Y

Student & Question features

Level of understanding

Probability of correct guess

Responses



Learning Algorithm

# Response Model

- A variation of M2PL (Multidimensional Two-Parameter Logistic) model
- L<sub>i,j</sub>: the level of student i's understanding of the j<sup>th</sup> hidden concept.
- R<sub>i,j</sub>: the contribution of the j<sup>th</sup> hidden concept to question i
- R is normalized to sum up 1 so that  $X_{i,j} = L_i R_j^T$  is in [0,1]
- Two additional concepts for difficulty & outliers:
  - (r+1)<sup>th</sup> concept for what is known to everyone
  - (r+2)<sup>th</sup> concept for what is not known to everyone (e.g., difficult vocab)
- P = Logistic(X)
- Y = Bernoulli(P)



# Logistic Regression w/ Experts



# Logistic Regression w/ Experts

If experts can provide us w/R,



The MLE of L is

$$\min_{L_i} \sum_{j \in \Omega_{i\star}} [-Y_{ij} \log(P_{ij}) - (1 - Y_{ij}) \log(1 - P_{ij})]$$
s.t.  $0 \le L_{ij} \le 1$ ,  $\sum_{i} L_{ij} = 1$ ,  $P_{ij} = L_i R_j^T$ .

# Logistic Regression w/ Experts



- Noisy, subjective, ...
- (Observation) # of concepts is usually very large (prone to overfitting)
- Depends on human knowledge

# **Binary Matrix Completion (BMC)**



# Estimate L and R by solving

$$\min_{L,R} \sum_{(i,j)\in\Omega} [-Y_{ij}\log(P_{ij}) - (1 - Y_{ij})\log(1 - P_{ij})] + \mu ||LR^T||_*$$
s.t.  $0 \le L_{ij} \le 1, \ 0 \le R_{ij} \le 1, \ P = LR^T, \ \sum_i L_{ij} = 1, \ \forall i.$ 

$$\min_{L,R} \sum_{(i,j)\in\Omega} \left[ -Y_{ij} \log(P_{ij}) - (1 - Y_{ij}) \log(1 - P_{ij}) \right] + \mu \|LR^T\|_*$$

s.t. 
$$0 \le L_{ij} \le 1$$
,  $0 \le R_{ij} \le 1$ ,  $P = LR^T$ ,  $\sum_i L_{ij} = 1$ ,  $\forall i$ .

$$\min_{L,R} \sum_{(i,j) \in \Omega} \left[ -Y_{ij} \log(P_{ij}) - (1 - Y_{ij}) \log(1 - P_{ij}) \right] + \frac{\mu}{2} \left( \|L\|_F^2 + \|R\|_F^2 \right) \\ \|X\|_* = \min_{X = LR^T} \frac{1}{2} \left( \|L\|_F^2 + \|R\|_F^2 \right)$$

s.t. 
$$0 \le L_{ij} \le 1$$
,  $0 \le R_{ij} \le 1$ ,  $P = LR^T$ ,  $\sum_i L_{ij} = 1$ ,  $\forall i$ .

$$L_{i_k}^{(k+1)} = \Pi_{P_L} \left( \left( 1 - \frac{\mu_1 \alpha_k}{|\Omega_{i_k \star}|} \right) L_{i_k}^{(t)} - \alpha_k \frac{\phi_c \left( Y_{i_k j_k} - \phi(L_{i_k} R_{j_k}^T) \right)}{\phi(L_{i_k} R_{j_k}^T) (1 + e^{-\phi_c (L_{i_k} R_{j_k}^T - \phi_b)})} R_{j_k}^{(t)} \right),$$

$$R_{j_k}^{(k+1)} = \Pi_{P_R} \left( \left( 1 - \frac{\mu_1 \alpha_k}{|\Omega_{\star j_k}|} \right) R_{j_k}^{(t)} - \alpha_k \frac{\phi_c \left( Y_{i_k j_k} - \phi(L_{i_k} R_{j_k}^T) \right)}{\phi(L_{i_k} R_{j_k}^T) (1 + e^{-\phi_c (L_{i_k} R_{j_k}^T - \phi_b)})} L_{i_k}^{(t)} \right)$$

$$||X||_* = \min_{X=LR^T} \frac{1}{2} (||L||_F^2 + ||R||_F^2)$$

**Projected SGD** 



TOEIC (Test Of English for International Communication)

- -A test with 150 multiple-choice questions
- -7 parts
- Part 5, Part 6



Our office security door is scheduled to \_\_\_\_\_ this week so all staff members are required to return their security cards to the front desk.

- (A) replace
- (B) replaced
- (C) being replaced
- (D) be replaced



Seasons Greetings. As a \_\_\_\_\_ customer, we wanted you to be among the first to know about our upcoming holiday sale. All craft paper, specialty printer paper, and decorative envelopes will be reduced by 50% for the month of December.

- (A) value
- (B) valued
- (C) valid
- (D) validate



- Mobile applications (iOS/Android) launched in Korea
- Equipped w/ 4,202 TOEIC questions
- Data was collected from 1/1/2016 to 8/10/2016
- As a result,
  - 106k students signed up, 13m responses collected
  - => On average 130 questions per student
  - Many many outliers
    - Our app became so popular that a lot of people signed up just for checking out
    - Needed to preprocess the data

- Data Filtering
  - > 30 questions per student
  - > 3 seconds per question (on average)
  - > 400 students per question
- After filtering
  - n ~= 15k students
  - m ~= 2k questions
  - # of observed entries
    ~= 1.9m questions (6.5%)







- m ~= 2k questions are manually tagged by experts
- 15 experts first come up with 69 concepts for describing part 4/5 questions
- Each question is randomly assigned to 2 experts among 15 experts



# **Experiments: Results (AUC)**



# **Experiments: Results (Accuracy)**





#### **Prediction API in Products**



Diagnostic tests









#### **Conclusion & Discussion**

- ML framework for response prediction
  - Based on a variation of M2PL
  - Two algorithms:
    - Logistic regression with manually tagged questions
    - Binary matrix completion
- A large-scale experiment
  - Collected 13m responses from 106k students
  - A filtered data set is used for this work
  - Experimental results show that BMC works the best
- Deployed in products (email me if you want to try it yourself ☺)
- Many open problems & new directions
  - Interpretation of hidden concepts for an efficient design of edu. resources
  - Prediction of choices
  - Time-varying L, Sparse R
  - Convergence, Sample complexity, Biased sampling