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Learning Analytics

Data Collection - Data Analysis -Optimize Learning

e Prediction

« Recommendation
e Personalization
« Content Design

Rule-based
Machine Learning
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ReSpOnse Model & Learning [Bergner et al., 2012], [Lan, Studer, Baraniuk, 2014]
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* A variation of M2PL (Multidimensional Two-Parameter Logistic) model
* L;; : the level of student i's understanding of the j*" hidden concept.

* Ri; : the contribution of the j*" hidden concept to question i

* Ris normalized to sum up 1 so that X;; = LR;"is in [0,1]

* Two additional concepts for difficulty & outliers:
* (r+1)* concept for what is known to everyone
* (r+2)% concept for what is not known to everyone (e.g., difficult vocab)

* P = Logistic(X) E
* Y = Bernoulli(P)
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Logistic Regression w/ Experts

Y =28 e’rn LRT



Logistic Regression w/ Experts

If experts can provide us w/ R,

Y = Bern(¢p(LR"))

The MLE of L is

mm Z —Yi; log(P;;) — (1 — ng) log(1 sz)]
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who want to apply for this position are requested
to submit their performance,

: ' (A) You * Experts
Question 9 Yo L ot |
(C) Another Frow SourC|ng
(D) Some
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* Noisy, subjective, ...
* (Observation) # of concepts is usually very large (prone to overfitting)
 Depends on human knowledge



Binary Matrix Completion (BMC)
] PR

Y = Bern(¢p(LR"))

Estimate L and R by solving

min —Y;;log(P;;) — (1 — Y;;) log(1 — Pyj)] + pl|LR" ||

st. 0< Ly <1, 0<R;; <1, P=LR", Y Ljj=1, Vi
J



Algorithm for BMC [Recht, Re', 2013]
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7 | } TOEIC (Test Of English for International Communication)

- A ,1 -A test with 150 multiple-choice questions
T o -/ parts
e & F & ¢ Part5,Part6 “
l Seasons Greetings. As a customer, we
Our office security door is scheduled to wanted you to be among the first to know
this week so all staff members are required to about our upcoming holiday sale. All craft
return their security cards to the front desk. paper, specialty printer paper, and decorative
envelopes will be reduced by 50% for the
(A) replace month of December.
(B) replaced
(C) being replaced (A) value
(D) be replaced (B) valued
(C) valid

(D) validate



Experiments: Data Set
mwrer © Mobile applications (i0S/Android) launched in Korea
X Question 10/16 * Equipped w/ 4,202 TOEIC questions

| was especially interested in your thoughts o Data WwWas Collected from 1/1/2016 to 8/10/2016

on global economic growth and the new and
10 technologies you mentioned

related to sustainable agriculture in Third

WorldlcoUntics  As aresult,

106k students signed up, 13m responses collected
e =>0n average 130 questions per student

Question 10 * Many many outliers

(A)  punctua  Our app became so popular that a lot of

innovative people signed up just for checking out

* Needed to preprocess the data

| currently work for an organization that deals

with setting up oversees charities with




Data Filtering 700
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m ~= 2k questions are manually tagged by experts

15 experts first come up with 69 concepts for describing part 4/5 questions

Each question is randomly assigned to 2 experts among 15 experts
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| | | BMC (0.77)
0.8 ......................

& l | Question-based (0.72)
m |
o 0.6 User-based (0.65)
=
Z Logistic regression
3 0.4 w/ experts (0.58)
|§ Random Prédiction
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rediction APl in Products
RIEEIAE ARt Diagnostic tests
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M1

Since advertising on the radio is normally
not as as advertising on
television, many businesses prefer to use
local radio stations for their marketing
needs.
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ML framework for response prediction
e Based on a variation of M2PL
* Two algorithms:
* Logistic regression with manually tagged questions
* Binary matrix completion

A large-scale experiment
e Collected 13m responses from 106k students
* Afiltered data set is used for this work
* Experimental results show that BMC works the best

Deployed in products (email me if you want to try it yourself ©)

Many open problems & new directions
* Interpretation of hidden concepts for an efficient design of edu. resources
* Prediction of choices
* Time-varying L, Sparse R
e Convergence, Sample complexity, Biased sampling



