ML for Education NIPS Workshop 12/10/2016 # ML Approaches for Learning Analytics: Collaborative Filtering Or Regression With Experts? Kangwook Lee Joint work w/ Jichan Chung, Yeongmin Cha, and Changho Suh # **Learning Analytics** #### Data Collection ### Data Analysis # Optimize Learning - Rule-based - Machine Learning - Recommendation - Personalization - Content Design - ... # **Learning Analytics** #### **Data Collection** ### Data Analysis # Optimize Learning - Rule-based - Machine Learning - Recommendation - Personalization - Content Design - .. # Response Model & Learning [Bergner et al., 2012], [Lan, Studer, Baraniuk, 2014] $$L \in [0,1]^{n \times r}$$ $$R \in [0,1]^{m \times r}$$ $$X = L \times R^T$$ $P = \phi(X)$ Y Student & Question features Level of understanding Probability of correct guess Responses Learning Algorithm # Response Model - A variation of M2PL (Multidimensional Two-Parameter Logistic) model - L_{i,j}: the level of student i's understanding of the jth hidden concept. - R_{i,j}: the contribution of the jth hidden concept to question i - R is normalized to sum up 1 so that $X_{i,j} = L_i R_j^T$ is in [0,1] - Two additional concepts for difficulty & outliers: - (r+1)th concept for what is known to everyone - (r+2)th concept for what is not known to everyone (e.g., difficult vocab) - P = Logistic(X) - Y = Bernoulli(P) # Logistic Regression w/ Experts # Logistic Regression w/ Experts If experts can provide us w/R, The MLE of L is $$\min_{L_i} \sum_{j \in \Omega_{i\star}} [-Y_{ij} \log(P_{ij}) - (1 - Y_{ij}) \log(1 - P_{ij})]$$ s.t. $0 \le L_{ij} \le 1$, $\sum_{i} L_{ij} = 1$, $P_{ij} = L_i R_j^T$. # Logistic Regression w/ Experts - Noisy, subjective, ... - (Observation) # of concepts is usually very large (prone to overfitting) - Depends on human knowledge # **Binary Matrix Completion (BMC)** # Estimate L and R by solving $$\min_{L,R} \sum_{(i,j)\in\Omega} [-Y_{ij}\log(P_{ij}) - (1 - Y_{ij})\log(1 - P_{ij})] + \mu ||LR^T||_*$$ s.t. $0 \le L_{ij} \le 1, \ 0 \le R_{ij} \le 1, \ P = LR^T, \ \sum_i L_{ij} = 1, \ \forall i.$ $$\min_{L,R} \sum_{(i,j)\in\Omega} \left[-Y_{ij} \log(P_{ij}) - (1 - Y_{ij}) \log(1 - P_{ij}) \right] + \mu \|LR^T\|_*$$ s.t. $$0 \le L_{ij} \le 1$$, $0 \le R_{ij} \le 1$, $P = LR^T$, $\sum_i L_{ij} = 1$, $\forall i$. $$\min_{L,R} \sum_{(i,j) \in \Omega} \left[-Y_{ij} \log(P_{ij}) - (1 - Y_{ij}) \log(1 - P_{ij}) \right] + \frac{\mu}{2} \left(\|L\|_F^2 + \|R\|_F^2 \right) \\ \|X\|_* = \min_{X = LR^T} \frac{1}{2} \left(\|L\|_F^2 + \|R\|_F^2 \right)$$ s.t. $$0 \le L_{ij} \le 1$$, $0 \le R_{ij} \le 1$, $P = LR^T$, $\sum_i L_{ij} = 1$, $\forall i$. $$L_{i_k}^{(k+1)} = \Pi_{P_L} \left(\left(1 - \frac{\mu_1 \alpha_k}{|\Omega_{i_k \star}|} \right) L_{i_k}^{(t)} - \alpha_k \frac{\phi_c \left(Y_{i_k j_k} - \phi(L_{i_k} R_{j_k}^T) \right)}{\phi(L_{i_k} R_{j_k}^T) (1 + e^{-\phi_c (L_{i_k} R_{j_k}^T - \phi_b)})} R_{j_k}^{(t)} \right),$$ $$R_{j_k}^{(k+1)} = \Pi_{P_R} \left(\left(1 - \frac{\mu_1 \alpha_k}{|\Omega_{\star j_k}|} \right) R_{j_k}^{(t)} - \alpha_k \frac{\phi_c \left(Y_{i_k j_k} - \phi(L_{i_k} R_{j_k}^T) \right)}{\phi(L_{i_k} R_{j_k}^T) (1 + e^{-\phi_c (L_{i_k} R_{j_k}^T - \phi_b)})} L_{i_k}^{(t)} \right)$$ $$||X||_* = \min_{X=LR^T} \frac{1}{2} (||L||_F^2 + ||R||_F^2)$$ **Projected SGD** TOEIC (Test Of English for International Communication) - -A test with 150 multiple-choice questions - -7 parts - Part 5, Part 6 Our office security door is scheduled to _____ this week so all staff members are required to return their security cards to the front desk. - (A) replace - (B) replaced - (C) being replaced - (D) be replaced Seasons Greetings. As a _____ customer, we wanted you to be among the first to know about our upcoming holiday sale. All craft paper, specialty printer paper, and decorative envelopes will be reduced by 50% for the month of December. - (A) value - (B) valued - (C) valid - (D) validate - Mobile applications (iOS/Android) launched in Korea - Equipped w/ 4,202 TOEIC questions - Data was collected from 1/1/2016 to 8/10/2016 - As a result, - 106k students signed up, 13m responses collected - => On average 130 questions per student - Many many outliers - Our app became so popular that a lot of people signed up just for checking out - Needed to preprocess the data - Data Filtering - > 30 questions per student - > 3 seconds per question (on average) - > 400 students per question - After filtering - n ~= 15k students - m ~= 2k questions - # of observed entries ~= 1.9m questions (6.5%) - m ~= 2k questions are manually tagged by experts - 15 experts first come up with 69 concepts for describing part 4/5 questions - Each question is randomly assigned to 2 experts among 15 experts # **Experiments: Results (AUC)** # **Experiments: Results (Accuracy)** #### **Prediction API in Products** Diagnostic tests #### **Conclusion & Discussion** - ML framework for response prediction - Based on a variation of M2PL - Two algorithms: - Logistic regression with manually tagged questions - Binary matrix completion - A large-scale experiment - Collected 13m responses from 106k students - A filtered data set is used for this work - Experimental results show that BMC works the best - Deployed in products (email me if you want to try it yourself ☺) - Many open problems & new directions - Interpretation of hidden concepts for an efficient design of edu. resources - Prediction of choices - Time-varying L, Sparse R - Convergence, Sample complexity, Biased sampling