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ABSTRACT 

Motivated by the good results of capsule networks in text 

classification and other Natural Language Processing tasks, we 

present in this paper a Bi-GRU Capsule Networks model to 

automatically assess freely-generated student answers assessment 

within the context of dialogue-based intelligent tutoring systems. 

Our proposed model is composed of several important components: 

an embedding layer, a Bi-GRU layer, a capsule layer and a SoftMax 

layer. We have conducted a number of experiments considering a 

binary classification task: correct or incorrect answers. Our model 

has reached a highest accuracy of 72.50 when using an Elmo word 

embedding as detailed in the body of the paper. 

KEYWORDS 

Capsule networks, deep learning, intelligent tutoring systems, 
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1 Introduction 

Automatically assessing open-ended short student responses is an 

extremely challenging task as students can express their responses 

in numerous ways owing to different individual styles and varied 

cognitive abilities and knowledge levels. This assessment plays a 

vital role in improving the tutoring experience. The system 

provides hints and feedbacks for the struggling students with 

incorrect answers. Table 1 shows four answers, articulated by four 

different college students, to a question asked by the state-of-the-

art intelligent tutoring system (ITS) DeepTutor (Rus et al., 2013). 

It should be noted that all four student answers in Table 1 are 

correct answers to the tutor question. As can be seen from the table, 

some students write full sentences (student answer A4), some 

others write very short answers (A3), and yet other students write 

elaborate answers that include additional concepts relative to the 

reference answer (A1).  

 

The widely adopted and scalable approach to assessing such open-

ended student responses is semantic similarity in which a score, 

usually normalized, is computed between a target student answer 

and an expert-provided reference answer (Banjade et al., 2016). If 

the student answer has a high semantic similarity score to the 

reference answer we infer that the student answer has the same 

correctness value as the reference answer. A low semantic 

similarity score implies the student response is incorrect. It should 

be noted that sometimes the reference answer may denote a 

common misconception in which case a high-similarity score to 

such misconception means the student answer also indicates a 

misconception, i.e., it is incorrect. 

 

Problem description:  

While speeding up, a large truck pushes a small compact car.  

Tutor question: 

 How do the magnitudes of forces they exert on each other 

compare?  

Reference answer:  

The forces from the truck and car are equal and opposite.  

Student answers:  

A1. The magnitudes of the forces are equal and opposite to 

each other due to Newton’s third law of motion.  

A2. they are equal and opposite in direction  

A3. equal and opposite  

A4. the truck applies an equal and opposite force to the car. 

 

Table 1. Example of students’ answers 

 

More broadly, the task of computing the semantic similarity of two 

texts consists of determining, both quantitatively (e.g., normalized 

score between 0 and 1) or qualitatively (are the two texts in a 

paraphrase, elaboration, or entailment relation) the degree of 

similarity between the two texts. It is a widely used step in many 

Natural Language Processing (NLP) applications such as text 

summarization (Wong et al., 2008; Nenkova et al., 2011), question 

answering (Vo et al., 2015) and machine translation (Corley and 

Mihalcea, 2005). It should be noted that we can distinguish among 

semantic similarity tasks and methods at various granularity levels: 

word-to-word similarity (w2w), phrase-to-phrase(ph2ph), 

sentence-to-sentence (s2s), paragraph-to-paragraph (p2p), and 

document-to-document (d2d) similarities. 

 

Several approaches have been proposed to automatically assess the 

semantic similarity of short, sentence-level texts, which are our 

focus. For instance, recently, NLP researchers have applied 

extensively deep learning models, which have the advantage of not 

needing hand-crafted features and other external resources, that is, 

just the raw sentences and the corresponding pre-trained word 

embeddings are needed as input.  Despite of this limited-resource 

approach, many deep learning methods have provided state of art 

of performance. For example, Pontes and colleagues (2018) 

proposed a deep learning model that combines convolution and 



  

 

 

 

recurrent neural networks to measure the semantic similarity of 

sentences. This combination of networks has been helpful in 

capturing the most relevant information of sentences, thus, 

improving the computation of semantic similarity scores relative to 

state-of-the-art systems. Other approaches worth-mentioning are: 

(1) the Non Linear Similarity approach (Tsubaki et al., 2016), 

where word representations are inferred through the similarity 

learning of sentences in high-dimensional space with kernel 

functions, (2) Constituency Tree LSTM (Tai et al., 2015) which is 

a generalization to LSTMs to tree-structured network topologies, 

and (3) Skip-thought (Kiros et al. 2015), where an encoder-decoder 

model is used to reconstruct the surrounded sentences. Then, 

sentences with common semantic and syntactic properties are 

mapped to similar vector representations. 

 

Furthermore, Bao et al. (2018) proposed an Attention Siamese 

Long Short-Term Memory (LSTM) model to measure the semantic 

textual similarity. An attention mechanism has been used to capture 

the high-level semantic information. The empirical experiments 

have demonstrated the effectiveness of the model with an 

impressive performance. 

 

Wang and colleagues (2018) presented an approach that combines 

a Bidirectional Long Short-Term Memory Networks (BLSTM) and 

Convolutional Neural Networks to extract the semantic features of 

a sentence. Then sentence representations are learned with word-

level attention. Finally, an output layer that calculates the similarity 

score was used. This proposed model was evaluated using the 

Quora duplicate questions public dataset. The obtained results 

showed that this model has outperformed many existing 

approaches, such as Support Vector Machine (SVM), 

Convolutional Neural Networks (CNN), Bidirectional Long Short 

Term Memory (BLSTM) and attention based BLSTM, with a 

highest accuracy of 0.89. 

 

Our approach is very different from these approaches except the 

fact that uses Deep Learning.  

 

Our task of automatically assessing freely generated student 

answers within a dialog system context is a special case of the more 

general semantic similarity task. As shown in Figure 1, given two 

inputs, the student answer and the reference answer, the assessment 

model computes the correctness of the student answer. Typically, 

the reference and student answer are domain specific as tutoring 

targets specific science topics, e.g., Physics. Furthermore, the 

answers are generated in the context of problem-solving 

instructional activities in which students are asked to provide 

solutions to various problems in the form of short essays, the essays 

are evaluated and if incorrect and/or incomplete a tutorial dialogue 

follows in which students provide short answers to tutoring 

systems’ hints. For this work, we don’t capture domain specific 

information. This can be addressed in a future work.  

 

 
  

 Figure 1. students’ answers assessment problem statement 

 

Motivated by the good results of deep learning models in similar 

semantic similarity tasks, we present in this paper a Bi-GRU 

Capsnet model to assess the students answers generated during 

student-system dialogue-based interactions. Capsules have the 

capability to express the semantic meanings in a wider space using 

a vector instead of a scalar. Thus, these capsules are suitable to 

express a sentence as a vector (Kim. J et al.,2018). This generated 

vector captures the instantiation parameters of the input such as the 

order of the words and their semantic representation. On the other 

hand, word embeddings also transform words into lower 

dimensional vectors that preserve the contextual similarity of 

words. In general, the embedding vectors are fed into various deep 

learning models. Our model consists of several important 

components. First, there is an embedding layer that transforms each 

word of the input to a distributed vector representation. Second, the 

resulted embedding matrix is fed into a Bidirectional Gated 

Recurrent Units layer (Bi-GRUs) (Cho et al., 2014) to encode the 

input text into a fixed length representation.  The fixed length 

representation is then fed into a capsule network. Finally, the 

capsule network is followed by a fully connected dense layer with 

SoftMax activation for the classification. We evaluate the 

performance of our model using the DT-Grade (Banjade et al., 

2016) corpus. 

 

The paper is organized as following: paragraph 2 represents the 

related research work. The next section describes the model 

architecture and its components. Section 4 depicts the conducted 

experiments and results. The final section concludes the paper, 

summarizing the main contribution of this work and the possible 

directions to improve the current results.  

2 Related work 

Capsule networks have been introduced by Geoffrey Hinton for 

image classification to overcome the limitations of the Convolution 

Neural Networks particularly in the pooling layer. These networks 

are based on so called capsules and are trained using a dynamic 

routing algorithm (Sabour et al., 2017).  Each capsule encodes a 

particular feature (e.g. local order of words, semantic 

representations of words) that the network is looking for.  The 

magnitude of a capsule vector defines the probability of the 

existence of that feature. The layers of capsule networks are 

connected via computing a learned vector between each pair of 

capsules. Then, the routing algorithm is used to ensure that the 

output of the capsule, which is a vector, gets sent to an appropriate 

parent in the layer above. The capsule computes a “prediction 

vector” for each possible parent. This prediction vector is 

calculated by multiplying the capsule ‘s own output by a weight 

matrix. A top-down feedback is applied, in case the prediction 

vector has a large scalar product with the output of a possible 

parent. This is done to increase the coupling coefficient for that 

parent and decrease it for other parents.  In sum, this iterative 

routing process decides the credit attribution between the nodes in 

lower and higher levels. Recently, several NLP researchers have 

applied Capsule Networks for various tasks such as text 



 

classification and sentiment analysis. The obtained results were 

very impressive and encouraging to further investigate these 

networks in related tasks. 

 

Zhao and colleagues (2018) used capsule networks with dynamic 

routing algorithm for text classification. To boost performance, 

they have applied three different strategies to stabilize the dynamic 

routing process by decreasing some noise capsules. First, an 

Orphan category has been added to the network to capture the 

background information such as stop words and the words that are 

unrelated to specific categories. Second, a Leaky-SoftMax 

approach has been used to update the connection strength between 

the parent capsules and their children. Third, the connection 

strength has been amended using the probability of the existence of 

the child capsules. To evaluate the performance of the proposed 

approach, they have conducted several experiments using six 

different datasets. The obtained results demonstrated the 

effectiveness of capsule networks over many baseline methods. 

Our approach is similar in the sense that we model the student 

answer assessment task as a text classification task. However, the 

architecture of our proposed model is different. In fact, Zhao and 

colleagues’ model consists of a convolutional layer after the 

embedding layer and our proposed model consists of a BI-GRU 

layer instead. 

 

Kim and colleagues (2018) have applied capsule networks for text 

classification. They have used a simple dynamic routing algorithm 

to boost the efficiency of the model. Their proposed model consists 

of the following components: (1) an embedding layer, (2) a feature 

map that use convolutions, (3) a convolutional capsule layer, and 

(4) a text capsule layer. The authors have conducted several 

experiments using different datasets. The results demonstrated the 

potential of the application of the capsule networks in the text 

classification.  This approach is similar to our work in the sense of 

considering the student answer assessment task as a text 

classification task. The main difference is using a BI-GRU layer 

instead of convolutions after the embedding layer.  

 

Capsule networks have been applied successfully in other NLP 

tasks. Zhang and colleagues (2018) proposed a relation extraction 

approach based on capsule networks with attention mechanism. 

Wang and colleagues (2018) presented an attention-based BI-

GRU-CapsNet model to detect hypernymy relationship between 

compound entities. Xia and colleagues (2018) proposed two 

capsule-based architectures to solve the zero-shot intent detection 

problem: the INTENT-CAPSNET that extracts semantic features 

from utterances and aggregate them to discriminate existing intents, 

and INTENTCAPSNET to discriminate emerging intents via 

knowledge transfer from existing intents. 

 

Based on these successes of capsule networks on related tasks, we 

have explored their potential for assessing student answers. To the 

best of our knowledge, this is the first attempt at using capsule 

networks for assessing student generated answers in conversational 

intelligent tutoring systems. 

3 Bi-GRU Capsnet Model 

Our proposed model (figure 2) consists four major components: (1) 

an embedding layer that transforms each word to a distributed 

vector with a dimension d, (2) a bidirectional- GRU encoder, (3) a 

capsule network that generates semantic representations of the 

student and reference answers using a dynamic routing algorithm, 

(4) a SoftMax layer that computes the probabilities of the 

correctness classes. 

3.1 Embedding layer  

Given a student answer 𝑋 and a reference answer 𝑋′, we tokenize 

them into a sequence of words: 𝑋 = [𝑤1, . . . , 𝑤𝑛]  and 𝑋′ =
[𝑤′

1, … , 𝑤′
𝑚] .  Afterwards, each token is converted into a d-

dimensional vector through the embedding layer.  In this work, we 

consider the following word embeddings approaches: Glove, 

Word2vec and ELMo. 

 

• Glove embedding has been proposed by Pennington et al. 

(2014).  It is a “count b-based” model where the word co-

occurrence count matrix is pre-processed by normalizing 

the counts and log-smoothing operation.  This matrix is 

then factorized to get lower dimensional representations. 

• Word2vec embedding has been proposed by Mikolov 

and colleagues (2013). Two models have been proposed: 

CBOW and skip-gram. CBOW computes the probability 

of a target word given the context surrounding words 

within a window. Skip-gram is the opposite of CBOW 

model where the probability of the surrounding words is 

computed given the target word. 

• ELMo (Peters et al. ,2018) method produces word 

embeddings for each context where the word is used, thus 

allowing different representations for the same word. The 

mechanism of ELMo is based on the representation 

obtained from a bidirectional language model(biLM). It 

consists of two language models (LM): forward LM and 

backward LM. The use of ELMo embedding has boosted 

the performance of several deep learning models.  

 

 



  

 

 

 

 
 

         Figure 2. Bi-Gru-Capsnet model architecture 

 

3.3.2 Bi-GRU layer 

A GRU model is a variant of the Recurrent Neural Network (RNN). 

GRU has two gates: un update gate z and a reset gate r. The update 

gate determines how much memory of previous cell to keep alive, 

and the rest gate determines how to combine the input of new cell 

with the previous memory. For each position 𝑡, GRU computes ℎ𝑡 

with input 𝑥𝑡 and previous state ℎ𝑡−1, as: 

 

              𝑟𝑡 =  𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1)                               (1)               

              𝑢𝑡 =  𝜎(𝑊𝑢𝑥𝑡 + 𝑈𝑢ℎ𝑡−1)                              (2) 

              ℎ�̃� =  tanh(𝑊𝑐𝑥𝑡 + 𝑈(𝑟𝑡 ∙ ℎ𝑡 − 1))              (3) 

              ℎ𝑡 = (1 − 𝑢𝑡) ∙ ℎ𝑡−1 + 𝑢𝑡 ∙ ℎ�̃�                       (4) 

 

Where ℎ𝑡  , 𝑟𝑡   and 𝑢𝑡  are d-dimensional hidden state, reset gate, 

and update gate.  𝑊𝑟  ,  𝑊𝑢  , 𝑊𝑐   and  𝑈𝑟  , 𝑈𝑢  and  𝑈   are the 

parameters of the GRU model. 𝜎 is the sigmoid function, and . is 

the element-wise production. 

 

The outputs vectors  ℎ𝑡 and ℎ𝑡
′
 are fed into the capsule layer.  

 3.3 Capsule layer 

The assumption behind capsule networks is that there are capsules 

(group of neurons) that tell whether certain entities are present in 

an image. A capsule as shown in figure 3 has an activation vector 

that represents the instantiation parameters of an entity and whose 

length represents the probability of the existence of that entity. 

       

         

 

       Figure 3. Capsule structure 

 

Given the input vectors 𝑢1, 𝑢2 and 𝑢3 from the previous layers, a 

learned transformation matrix  𝑊𝑖𝑗  is applied to generate the 

predictors vectors 𝑢�̂� as following: 

                               �̂�𝑗|𝑖 =  𝑊𝑖𝑗𝑢𝑖             (5) 

Then, in the higher layer, a capsule 𝑠𝑗   is computed by the linear 

combination of all the prediction vectors with weights 𝑐𝑖𝑗  as 

following: 

                 𝑠𝑗 =  ∑ 𝑐𝑖𝑗𝑢𝑗|𝑖𝑖         (6) 

where 𝑐𝑖𝑗 are coupling coefficients computed the dynamic routing 

algorithm described in figure 4. 

 

 

Routing Algorithm 

1: procedure ROUTING (�̂�𝑗|𝑖 , 𝑟, 𝑙 ) 

2: for all capsule 𝑖 in layer 𝑙 and capsule 𝑗 in layer 𝑙 + 1: 

                𝑏𝑖𝑗 ← 0 

3: for 𝑟 iterations do  

4: for all capsule 𝑖 in layer 𝑙 : 

         𝑐𝑖 ← 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑏𝑖)                        SoftMax computes Eq.3 

5: for all capsule 𝑗 in layer (𝑙 + 1): 𝑠𝑗 ← ∑ 𝑐𝑖𝑗�̂�𝑗|𝑖𝑖  

6: for all capsule 𝑗 in layer (𝑙 + 1): 

          𝑣𝑗 ← 𝑠𝑞𝑢𝑎𝑠ℎ(𝑠𝑗)                            squash computes Eq.1 

7: for all capsule 𝑖 in layer 𝑙 and capsule 𝑗 in layer (𝑙 + 1) : 

          𝑏𝑖𝑗 ← 𝑏𝑖𝑗 + �̂�𝑗|𝑖 ∙ 𝑣𝑗  

   return 𝒗𝒋 

            

            Figure 4. the routing algorithm 

 

   As stated before, the output of a capsule represents the probability 

that the input has the entity that the capsule describes. So, the range 

of the activation vector should be in the [0,1] interval. For this 

purpose, a squash function is applied to generate the final output 

vector 𝑣𝑗  as following: 

                                                             

 

                                  𝒗𝒋 =
‖𝒔𝒋‖

𝟐

𝟏+‖𝒔𝒋‖
 

𝒔𝒋

‖𝒔𝒋‖
𝟐       (7) 

 

 

The final outputs of the capsule layers for the given students’ 

answers are activation vectors 𝑣1  and  𝑣2. 



 

Afterwards, we concatenate these vectors as [𝑣1, 𝑣2] and we feed 

this concatenation into a SoftMax layer that computes the 

probability for each correctness class. 

4 Experiments and Results 

Our experiments were conducted in the context of student 

generated answers in response to hints (in the form of questions) in 

conversational intelligent tutoring systems. To this end, we have 

used a previously annotated dataset as described next. 

 

4.1 The DT-Grade Dataset 
 The DT-Grade dataset consists of 900 instances of student answers 

extracted from logged tutorial interactions between 40 junior level 

college students and the state-of-the-art intelligent tutoring system 

DeepTutor. Each annotation example (See table 1) consists of the 

following attributes: (1) problem description, (2) tutor question, (3) 

student answer and (4) reference answers. In addition, the data 

includes the correctness class of each student answer. There are 

four classes: correct, correct but incomplete, incorrect and 

contradictory. 

 

In this work, we consider two classes: correct and incorrect. The 

correct answers are those labeled as “correct“ in the DT-Grade 

dataset. All the other instances are considered as belonging to the 

“incorrect” class. 

 

 

Problem Description:  

A car windshield collides with a mosquito, squashing it. 
Question: 

How does Newton's third law apply to this situation? 
Student Answer: 

the windshield will apply a force to the mosquito equal the force 

applied by the mosquito to the windshield 
Reference answer 

1:  Since the windshield exerts a force on the mosquito, which 

we can call action, the mosquito exerts an equal and opposite 

force on the windshield, called the reaction. 

 

Table 3.  Annotation example of the DT-Grade dataset 

 

 

4.2 Results 
Several experiments have been conducted with different capsnet          

neural networks (see table 4) varying the embedding 

representations and the number of capsules to evaluate the 

performance of our proposed model using the DT-Grade dataset.  

 

          Table4. The performance results of various models. 

 A first set of experiments have been conducted using the 

pretrained Glove embeddings with 100 dimension and three 

different values of the number of capsules. Based on the literature, 

we have started with a value of 10 and added two other values: 15 

and 20. This has been done to test the impact of different 

expressiveness levels of the capsule network layer on the 

performance. A second set of experiments have been conducted 

using word2vec embeddings with 100 dimensions while using the 

same different values of the number of capsules. Another set of 

experiments have been run using ELMo embeddings with 300 

dimensions, which are the state of art of embeddings, while using 

the same values of the number of capsules. To compare the 

performance of our model with existing ones, we have empirically 

experimented the following baseline deep learning models: (1) An 

LSTM (Long Short-Term Memory) neural network that consists of 

a Glove embedding and 240 cells. (2) A Bi-GRU network that 

consists of Glove embedding with 50 units. 

During the experiments, we used 80% of data set for training and 

20% for testing. The distribution of classes, as shown in Table 5, in 

training and testing is imbalanced. To overcome this problem, we 

adjusted the class weights in the model during the training.                        

         

Dataset   Correct (%)             Incorrect (%) 

 

Training             41                        59 

Testing                         41.58                                                                  58.41 

 

 Table5. the distribution of classes in training and testing data 

 

Model  Accuracy %    F1 Measure 

 Bi-GRU-capsnet 

(Glove,10) 

        61         0.61 

 Bi-GRU-capsnet 

(Glove,15) 

        60.62            0.55 

 Bi-GRU-capsnet 

(Glove,20) 

        58.75         0.6 

 Bi-GRU-capsnet 

(Word2vec,10) 

        55         0.59 

 Bi-GRU-capsnet 

(Word2vec,15) 

        56.25         0.57 

 Bi-GRU-capsnet 

(Word2vec,20) 

        52.25         0.47 

 Bi-GRU-capsnet 

(Elmo,20) 

 Bi-GRU-capsnet 

(Elmo,15) 

        69.37 

         

        66.25 

        0.68 

        

        0.66 

 Bi-GRU-capsnet 

(Elmo,10) 

        72.5         0.7 

 Bi-GRU (Glove)                                            

 LSTM (Glove) 

        56.25 

        60 

        0.56 

        0.6 



  

 

 

 

Table5 represents the distribution of classes in the training and test 

dataset. As mentioned previously, we have considered data with 

correct label as correct and anything else as incorrect.  

 

Hyperparameters. In all the experiments, we used a Bi-GRU layer 

with 50 units. Several numbers of units have been tested and this 

value has led to higher accuracy. We also added a 0.2 Dropout to 

the Bi-GRU layer to prevent over-fitting. For the capsule layer, we 

used 3 iterations for the routing algorithm and 16 for the capsule 

dimension. We also added a 0.2 Dropout to prevent over-fitting.  

For optimization, we use the Adam optimizer (Kimgma and 

Ba,2014) with a learning rate of 0.0001. The gradients are clipped 

to 0.5 to prevent exploding gradients. We trained our model for 100 

epochs to obtain the results. The increase of epochs, particularly 

when using the ELMo embedding, showed an increase in the 

overall accuracy and F1-measure values.     

 

Table 4 shows the results on the DT-Grade dataset. Our Bi-GRU 

capsnet model outperforms the baselines deep learning models, 

particularly the Bi-Gru and LSTM models. The results show that 

our model reaches the highest accuracy of 72.5 and 0.7 of F1-

measure when using the ELMo embedding particularly. This is not 

a surprising result. Several research works have demonstrated that 

ELMo embeddings boost the performance of deep learning models 

in various NLP tasks. However, the accuracy and F1 score 

decreased significantly when using the word2vec embedding 

approach.  72.5 accuracy is considered a very good result for the 

DT-Grade dataset due to its small size in comparison with larger 

NLP datasets.  

 

5. Conclusions 
In this paper, we proposed a Bi-GRU-Capsnet model to assess the 

correctness of the students answers within the intelligent tutoring 

system DeepTutor. We have chosen this deep learning model to get 

benefits from its no requirements of hands -crafted features and 

external resources. Added to this, Capsule networks have the 

capability to express the semantic meanings in a wider space using 

a vector that captures the instantiation parameters of the input such 

as the order of words and their semantic representation .  The 

experimental results show that our model reached the state of art of 

performance on the DT-Grade dataset. Particularly, our model 

reached the highest accuracy when using the ELMo embeddings. 

In the future, we plan to investigate more deep learning models to 

improve the current results. 
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