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Personalized Education

 Trend in education: larger and larger classes
- physical classrooms
- MOOCs
e Unsatisfactory because students are heterogeneous
- heterogeneous backgrounds & abilities
- heterogeneous styles of learning
- heterogeneous goals
=> Personalization
- maintain engagement
- improve learning

e Our approach: electronically personalized interactive
environment (EPIE) for each student

=> “as if” one mentor for every student




EPIE

Discover
Relationships Degree
Among Recom- C Course
Courses mendation Recommendation
(Prerequisites) O
O
Curriculum UC Predict
Design N n Dropout
P.
O
. ) Personalized
Admission Discover omputerized
Policies Mentors Tutoring

http://medianetlab.ee.ucla.edu/EduAdvance



Some facts

e Students do not graduate on time!
e Only 50 out of 580+ public 4-year institutions in the US
have on-time graduate rates greater than 50%
 Time is money
. %Oei(ltlra year of a public 4-year college = $22,826 in year
e Student loan debt > a trillion dollars

e More than USA’s combined credit card and auto load
debts!

* System that can continuously track students’ performance
and accurately predict their future performance

e Timely identification of students unlikely to graduate on
time énd/or with a decent GPA)

e Enables timely interventions, course recommendations etc.



Challenges

e Students heterogeneity

* In backgrounds, chosen areas (majors), selected courses and
course sequences

e How to handle heterogeneous student data?

I”

e Not all courses are created “equa

 How to discover the underlying relationships existing among
courses and use this for student tracking and course
recommendations?

e Sequential prediction problem
e Continuous tracking of student learning and student performance

e How to incorporate the evolution of student progress into
performance prediction?



Model

Student i
e Static features: background 6; € 0
e High school GPA, SAT scores etc.
 Dynamic features:

. xlt - performance/grades at the end of term t

e x!, x7, ..., x! quantifies the student’s

performance across time



Goal

e Predict final cumulative GPA after each term t

@t _ Z]’Egt C(j)xi(j) + Zje]\gt C(])fl(])
l 2jesc()
e J:set of all courses
o St: set of courses completed by term ¢
e c(j): course credit

e x;(j): grade for completed courses
o X;(j): predicted grade for uncompleted courses

* Related objective: predict the grade for each uncompleted
course



Proposed solution: hierarchical approach

Base layer

e A set of base (local) predictors H® implemented using
different prediction algorithms

e Each base (local) predictor h € H! outputs
Zﬁ,i — h(Hi,xf)
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Proposed solution: hierarchical approach

Ensemble layer
e One ensemble predictor f* for each term t

e Each ft synthesizes output y{—l of previous ensemble
predictors & base predictors zj ; and outputs J;

LTeerml1 | Term2 | - | Termt | .- __ _ _

— e e mn M M mmm mmm Rmm Mmm Mmm Mmm M R M e e e M S S M M mmm Mmm mmm mmm mmm mmm

~t Prediction

Pre-College 51 ~2
its | ' ] | atTermt
Traits bfl Yi ﬁ_yf Vi atTe
Student performance \‘\B\ealized true
4 ¥ ? performance
Local Prediction |« RANSCIL o i
; DEICLENY | <
Vi ) S Vi
—>{ Synthesis : -
- Y,

Quarter t Predictor



Design questions
e How to construct the base predictors?

- Customize to grade prediction

e How to construct the ensemble predictors?
- Consider temporal correlation



Learning Base Predictors

» An important question when training ht: how to
construct the input feature space

e Using all courses increases complexity and adds noise

* |dea: learn the courses that are most relevant to
the course for which we need to issue a prediction



Learning Relevant Courses

e Amatrix X of sizel X |
 Rows represent students
e Columns represent courses

« We aim to find course clusters by factorizing X = UTV
e U is the compressed grade matrix of size K X |

e I/'is the course-cluster matrix of size K X |
e K is the number of course clusters that we try to find
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Challenge

e Student grade matrix X can be sparse since it is
constructed using data from multiple study areas
and students only take a subset of courses

* Difficult non-convex optimization problem - cannot
be solved using standard SVD implementations

e Use probabilistic matrix factorization method in
[R. Salakhutdinov and A. Mnih, NIPS 2011]




Learning Relevant Courses

e Once U and IV are found

e Method 1: course j is assigned to a single cluster k with
the highest value among all possible course clusters
k(j) = arg max Vi i

* Method 2: course j belongs to cluster k if V, ; > v,
where vV is a predefined threshold value.

e For term t base predictor ht

* only relevant courses that have been taken by term t are
used for training ht



Learning Ensemble Predictors

e A stochastic setting
e Students arrive in sequence i = 1,2, ...
 Suitable for both offline training and online updating

e Students are assigned to clusters based on static feature 6;

*Ineachtermt
e Each base predictor ht € H' makes a prediction z7, ; =
h* (8, %;) |
* X! is performance state restricted to the relevant courses
e A total number of t X H prediction results by term ¢t

e Goal: synthesize base predictions to output final prediction



Some Possible Synthesis Methods

* Directly utilizing all past information

# of inputs at term ¢t

) )

t XH

ft
Large when t is large
Treat info equally

* Progressively utilizing past information

Lwt) (oe?) - (Y (Lot H+1

Constant, independent of t

fl f2 e ft—l—.@ Automatically discounts old info




Progressive Prediction

Exponentially weighted average forecaster
* w;(h?): weight for base predictor ht

« v;(f"): weight for ensemble predictor f*
. . . 2 t Wi(h)z'th'l'vi(ft_l)j}.t_l
o . 5t — ZheH i, i
Final prediction: y; = T
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Progressive Prediction

Exponentially weighted average forecaster
* Weights are updated according to their cumulative prediction loss

w1 (hY) = exp(—n;L;(hY))

e Cumulative prediction loss: L,,(h) = n l(thh;)’i)
L) = exp(—nil; (ft 1>)
e Cumulative predlctlon loss: L,(ft71) = l(At 1,yi)
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Performance

Learning regret up to student n
Reg!(n) = L, (f*) — Ly}
L’,‘{t is best local prediction performance in hindsight

Theorem:
Regret is sublinear inn

Reg’(n) < 0(vn)

Corollary:

lim %Regt(n) — 0: asymptotically optimal
Nn—>00



Performance

* The direct method has an expected regret bound
E[Regt(n)] <0 (\/n ln(Ht))




Dataset

e 1169 anonymized undergraduate students in UCLA
Mechanical and Aerospace Engineering department
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Dataset

e Selected Courses
e Average number of courses is 38
e Total number of distinct courses is 811.
e 759 of them are taken by less than 10% of the students
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Finding 1: Students with higher SAT also

obtain higher final GPA

4

R S TR
. E";-.g::."-t'z'“:’
l-: H "-‘i..‘ -.t"'_',-t" L] *
R !.h_'-':":l"::ﬁ-l -++_i_. "
. . i H o
3.5 . ,'x?'tﬂ' "ihfigr ¥Eﬁﬁ,, .
b :i'_ '= & “llﬁ:l i ._F . !"_ "': . :l-.
,;'I: el wg ai ='.=|'.. H _Eﬁ'—-;:; . l:'u-
o o oo LT e
E; . =l. 1I .:f'.'t:'!ll‘:h . "
3' = ': ili:..ll -1“;-:‘-"1‘
= - "l H . - ™
™ i i EF '-!"!i ?}”‘ .
E ‘t l » :I.:'.:‘Eljl'.l .:.i !++ W
: - L "y .:.. : :+l“.h‘i *
O 25f B R L el
E * ¥ L ] : ™ l: :.! ‘:‘--:
i T
2} R b
+  Student Performance
Linear Regressinn Fitti

1600 1800
SAT Combined Score

1.5
1200 1400

2000

2200

2400



Finding 2: SAT Math is better predictor,
compared with Verbal and Writing
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Finding 3: Students’ high school GPA is
almost not correlated with final GPA
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Core Course

Correlated Courses

e Matrix factorization results (K =20, K =5)
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Correlated Courses: Case Study

* MAE 182A (Mathematics of Engineering)

e Correlated courses according to prerequisites: MATH 31B,
MATH 32A, MATH 33A, MATH 33B

MATH 31B:
Integration & Infinite Series
y
MATH 32A(H):
Multi-variable Calculus I —l
\

MATH 33A: MATH 33B:
Linear Algebra Differential Equations

MAE 182A.

W
M

Mathematics of Engineering




Correlated Courses: Case Study

* MAE 182A (Mathematics of Engineering)

e Our method discovers additional correlated courses:
2, MAE 105A, PHYS 1A

Grade of MECH&AE0182A

CHEM 20BH, EE 110L, MAE 10
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Prediction Performance

e Base vs Our Ensemble

e Base predictors are implemented using linear
regression, logistic regression, random forest, KNN
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Prediction Performance

e Base vs Our Ensemble

e Base predictors are implemented using linear
regression, logistic regression, random forest, KNN
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Prediction Performance

 Benchmarks using different input features
e Same department only
* Only courses offered by same department
e Direct prerequisite only
e Series of prerequisite
* Include prerequisites of prerequisites



Prediction Performance
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Prediction Performance
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EPIE

C Course
Recommendation

C 2

Student

Tracking

W. Hoiles and M. van der Schaar, "Bounded Off-Policy Evaluation with

Missing Data for Course Recommendation and Curriculum Design" ICML,
2016.

J. Xu, T. Xiang and M. van der Schaar, "Personalized Course Sequence
Recommendations, " IEEE Transactions on Signhal Processing, vol. 64, no. 20,
pp. 5340-5352, Oct. 2016. 71
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