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ABSTRACT
In last few years, the Internet and Web contents have become re-

markable tools for studying. However, most search engines that can

find Web contents applicable for studying are not beginner friendly.

Learners must manually compare several pages on the search en-

gine to find beginner friendly Web contents. Visual intelligibility in

Web page layout and beginner friendly Web page texts are the re-

quirements of Web contents for beginners. This study focuses on the

factors of Web page visual intelligibility for explaining academic

concepts. We apply a VGG16 fine-tuning technique, a pre-trained

1000-way image classification to measure Web page visual intel-

ligibility for explaining academic concepts. We also apply a fine-

tuning approach for classifying visually intelligible / unintelligible

Web pages. We identify factors influencing visual intelligibility, re-

vealing that the Gradient-weighted Class Activation Mapping tech-

nique performs better for this task.

KEYWORDS
Web pages explaining academic concepts, deep learning, CNN, ex-
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1 INTRODUCTION
A search engine is an important tool for acquiring practical knowl-

edge in an academic community. To find beginner-friendly Web

pages through a search engine, many pages should be compared.

However, an ineffective manual comparison arises because no sys-

tematic criterion can measure a beginner friendly Web page. To

overcome this problem, we come up with a technique of measur-

ing beginner-friendly Web pages to explain academic concepts and

build a system for promoting the academic study and improve Web

learning.

Figure 1 shows an example of a beginner-friendly Web page in

explaining an academic concept “probability density function” in

statistics. The Web page is beginner-friendly because its title page,

formula, explanation texts, and figure are visually intelligible. The

explanation text is simple to understand, and has corresponding

footnotes below each page. Web pages are not beginner-friendly

if they violate at least one of the following requirements: (i) having

a visually intelligible layout for a page title, formula, explanation

text, and its figure, and (ii) having a simple explanation text and a

reference for further studies.

Figure 2 shows evidence of the non-existence of systematic cri-

terion for measuring beginner-friendly Web pages that ranked 10th

or higher on the Google search engine based on 105 queries of aca-

demic terms in seven academic fields: linear algebra, physics, biol-

ogy, programming, IT, statistics, and chemistry. The figure plots the

beginner-friendly Web pages ranked N -th or higher (N = 1, . . . ,10)

that mostly explain academic concepts from the academic term queries.

This evidence supports that no systematic criterion exists for mea-

suring beginner-friendly Web pages and explains the academic con-

cepts in the Google search engine.

To find beginner-friendly Web pages in explaining academic con-

cepts, the two requirements explained above ((i) and (ii)) are re-

quired. Thus, we focus on (i) Web page visual intelligibility to ex-

plain the academic concepts. We apply the fine-tuning technique of

VGG16 [16], a pre-trained 1000-way image classification to explain

academic concepts.
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Figure 1: Example of a Beginner-Friendly (i.e., the Web page layout is visually intelligible and its text is beginner-friendly) Web Page
in Explaining Academic Concepts (excerpt from https://mathtrain.jp/pmitsudo, in Japanese)

Figure 2: Rate of Beginner Friendly (i.e., Web page layout is visually intelligible and its text is beginner friendly) Web Pages in
Explaining Academic Concepts ranked 10th or Higher in the Search Engine
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Moreover, we identify factors influencing visual intelligibility of

Web pages in explaining academic concepts. The motivation for

studying the second task is a personal preference for visual intelli-

gibility. In section 3.2, at least around 10 or more factors constitute

visual intelligibility, and learners should consider any of the factors

based on their preferences. Aside from measuring visual intelligi-

bility on Web pages, another technique to measure visual intelligi-

bility is crucial. This study applies the Gradient-weighted Class Ac-

tivation Mapping (Grad-CAM) [14] to this task and demonstrates

that Grad-CAM performs better in identifying factors influencing

Web page visual intelligibility for explaining academic concepts.

2 RELATED WORK
No study has explored beginner-friendly Web pages for explaining

academic concepts. However, some studies have estimated skills

using slides and audios. Luzard et al. [9] applied machine learning

to show words, images, tables, and maximum font sizes in slides;

the most significant audio-based features are pitch and filled pauses.

Approaches to text readability judgment (e.g., Pitler and Nenkova [11];

González-Garduño and Søgaard [5]) are closely related to measur-

ing a beginner-friendly Web page text.

Explainable artificial intelligence (XAI) also identifies factors in-

fluencing Web page visual intelligibility for explaining academic

concepts. Bojarski et al. [2] proposed a deep neural network to de-

termine the elements in road images that influence steering decision

in autonomous driving. In deep neural network based approaches

to visual question answering (VQA) [1, 4, 7, 8, 10], techniques

to detect regions that represent elementary objects within an im-

age and formalize their relation to linguistic expressions have been

well studied. Ribeiro et al. [12] also proposed another XAI frame-

work that explains the predictions of any classifier and applied it to

text classification using support vector machines (SVMs) and im-

age classification by deep neural networks.

This study clearly differs from existing approaches on XAI be-

cause in our task focuses on quality judgment on visually intelligi-

ble Web pages. In the existing approaches, it is limited to identify

specific elementary items, such as an image in skiing, ski plates, and

poles. In our case, this is much more complicated because we must

identify factors, such as the proportion of characters and figures.

3 WEB PAGE REFERENCE DATA TO
EXPLAIN ACADEMIC CONCEPTS

3.1 Academic Fields and Concepts of Study
In this study, we collect science and technology (S&T) academic

terms used for queries because they have a similar criterion for

judging an entire beginner-friendly Web page, visual intelligibil-

ity of a Web page layout, and the beginner-friendliness of Web

page text. We select seven S&T fields for this study: linear alge-

bra, physics, biology, programming, IT, statistics, and chemistry.

For each field, we select 15 terms as queries of academic concepts at

the high school or university levels as listed in Table 1. The queries

are selected under the criterion that certain number of Web pages

ranked 10th or higher on Google search engine explain academic

concepts.

3.2 Factors of Visual Intelligibility
Table 2 lists the criteria of Web page visual intelligibility that ex-

plain the academic concepts for developing a reference data set.

Three absolute criteria and five optional criteria are used. For de-

veloping a manual reference data set, positive visually intelligible

Web page layout satisfies all of the three absolute criteria and at

least two optional criteria.

3.3 Reference Data Set
For each academic term in section 3.1, we collect the highest 10

Web pages ranked by the Google search engine using the academic

term as the query. In collecting Web pages, we ignore Web pages

whose HTML files are inaccessible. We also ignore the following

Web pages: Wikipedia1, Kotobank2, Weblio3, and Yahoo!

Chiebukuro4 (Japanese version of Yahoo! Answers5), which are on-

line encyclopedias and a question and answer site. These Web pages

are ranked high in most of the seven academic fields. However, they

are ineffective in explaining academic concepts and visually intel-

ligible Web page layout. The first author of this study6 judged the

visual intelligibility of each collected Web page and explained the

concepts in accordance with the criterion discussed in the previous

section. Finally, we consider Web pages that satisfy the positive and

negative visual intelligibility samples, as shown in Table 1. Of the

seven academic fields, we use the Web pages from four academic

fields as training samples, one academic field as development sam-

ples for stopping the training procedure, and the remaining two aca-

demic fields as test samples.

4 MEASURING WEB PAGE VISUAL
INTELLIGIBILITY TO EXPLAIN
ACADEMIC CONCEPTS

4.1 VGG16
Deep learning techniques have been applied to various research

fields and have achieved remarkable improvement in the state of

the art.

Pattern recognition domains, such as image recognition, convo-

lutional neural networks (CNN), and a large-scale image data set

such as ImageNet [13], achieve high performance in various im-

age recognition. Pre-trained CNN parameters using a large-scale

general-purpose data set of images (e.g., natural images) are quite

useful for extracting universal features for fine-tuned image recog-

nition tasks of specific domains, such as the medical domain [15,

17].

Following the success derived from this fine-tuning process, this

study applies the approach to the visual intelligibility automatic

judgment of the Web page layout to explain academic concepts. We

employ VGG16 CNN model [16] for extracting universal features.

1 https://ja.wikipedia.org/
2 https://kotobank.jp/
3 https://ejje.weblio.jp/
4https://chiebukuro.yahoo.co.jp/
5 https://answers.yahoo.com
6 In the preliminary study, where two authors of this study worked to develop reference
data set and analyzed their agreement rate, the results of the overall beginner-friendly
Web pages in explaining academic concepts and the Web page visual intelligibility lay-
out vary according to the annotators’ knowledge level and preferences. In developing
reference data set, we prefer consistent reference data with only one annotator.
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Table 1: Query Academic Terms (in Japanese) (positive: visually intelligible, negative: visually unintelligible)

academic # of
# of positive/negative

Web pages

fields queries academic terms (excerpts) pos. neg. total

linear

algebra
15 階数 (rank),共役勾配 (conjugate gradient),行列式 (determinant),クラ

メルの公式 (Cramer’s rule),クロネッカーのデルタ (Kronecker delta),

三角行列 (triangular matrix)

62 88 150

physics 15 電気力線 (line of electric force),張力 (tension),慣性の法則 (Newton’s

first law),遠心力 (centrifugal force),電波 (radio wave),電流 (electric

current)

52 98 150

train. IT 15 API, DBMS, HTML, IP アドレス (IP address), JDBC, RDB, SDK,

SQL, Unicode, URL,スコープマネジメント (scope management),タ
イムマネジメント (time management)

101 49 150

biology 15 DNA,ショウジョウバエ (Drosophilidae),原核生物 (Prokaryote),減数
分裂 (meiosis), 光合成 (photosynthesis), 細胞 (cell),葉緑体 (Chloro-

plast),ミトコンドリア (mitochondrion)

79 71 150

dev.
progra-

mming
15 C言語 (C), Java,エスケープシーケンス (escape sequence),コマンド

ライン引数 (command line arguments),スコープ (scope),フィールド
値 (field value),ポインタ (pointer)

58 92 150

statistics 15 事後分布 (posterior distribution),事前分布 (prior distribution),正規分
布，F 分布，信頼区間 (confidence interval), 標準偏差, 主成分分析
(principal component analysis)

94 56 150

tes. chemistry 15 イオン結合 (ionic bond), エステル (ester), カルボン酸 (carboxylic

acid), ケトン (ketone), 化学反応式 (chemical equation), 化学平衡
(chemical equilibrium)

63 87 150

total 105 — 509 541 1,050

Table 2: Criteria on Visual Intelligibility of Web Pages in Explaining Academic Concepts

a The proportion of

characters and fig-

ures

A moderate proportion of characters and figures are required. The proportion of

characters should neither be too high nor too low as compared with tables and

figures.

absolute b Background color Background color should neither be black nor primary colors to make Web page

characters easy to read.

criteria c Contrast The contrast of the character color and the background color should make the

Web page characters easy to read. For example, yellow characters with a white

background should be avoided.

d Figures At least one figure to explain the academic terms should be included in the Web

page. A table with characters should be avoided as a figure.

optional e Representative for-

mulas

A representative formula should be included in the Web page.

criteria f Proportion of text

and formulas

A moderate proportion of formulas compared with characters is required. The

proportion of formulas should be moderately high as compared with characters.

g Character size The size of the characters should not be too small.

h Advertisement Preferably, the Web page should not show advertisement. Even if the Web page

includes an advertisement, the smaller it is, the better the visual intelligibility

of the Web page. Preferably, the position of the advertisement should not be

centered.
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VGG16 model won second prize in the image classification task

and first prize in the single-object localization task in the 2014 Im-

ageNet Large Scale Visual Recognition Challenge (ILSVRC) [13].

Its neural net architecture consists of a stack of 13 convolutional

layers and 5 intermediate max-pooling layers. This is followed by

three fully-connected layers, a third layer to perform 1000-way

ILSVRC classification with 1000 channels (one for each class). The

final layer is a soft-max layer. The VGG16 model is a publicly avail-

able pre-trained 1000-way ILSVRC classification with 2014 Ima-

geNet data set. Moreover, the pre-trained VGG16 model is widely

transferable to other image recognition tasks through fine-tuning. In

this study, as one of the available versions of VGG16 model, we em-

ploy an available7 model within the deep learning library Pytorch8,

an open source machine learning library for Python.

4.2 Training Procedure
First, each Web page is transformed into its Web page layout im-

age9, and the fine-tuned VGG16 model is applied to judge the vi-

sual intelligibility of the Web page layout image. In fine-tuning

the VGG16 model, its three fully-connected layers of 1000-way

ILSVRC classification and the output layer are replaced with an-

other two fully-connected layers of binary classification (for judg-

ing the visual intelligibility of the Web page layout image) and the

output layer. In the fine-tuning process, pre-trained parameters of

13 convolutional layers and 5 intermediate max-pooling layers are

used as the initial fine-tuning parameter values. All the parameters

and the subsequent two fully-connected layers and the output layer

are fine-tuned with the reference training data set (i.e., from the four

academic fields of linear algebra, physics, IT, and biology, as shown

in Table 1). The training procedure is stopped based on the model

application to the development data set (i.e., from the academic field

of programming, as shown in Table 1).

4.3 Evaluation Results
In the evaluation process, we compare the results when the training

samples are 10/10, 5/10, and 1/10 of the training data set, as shown

in Table 1. Evaluation results are shown in Figures 3 and 410.

7 https://github.com/pytorch/vision
/blob/master/torchvision/models/vgg.py
8 https://pytorch.org/
9 The horizontal to vertical ratio of each image is as 2:3, and each image is compressed
into the size of 224 × 224.
10 As for the metric for measuring visual intelligibility of Web pages explaining aca-
demic concepts, we use recall and precision of detecting visually intelligible / un-
intelligible Web pages. Let U be the set of the whole testing Web pages and R+
be the set of reference Web pages that are manually judged as visually intelligi-
ble. The set of reference Web pages manually judged as visually unintelligible is

is obtained as R− = R+ = U − R+ . Let θlbd be the lower bound of the output
value returned by the sigmoid function of the output layer and S+ (θlbd ) (⊆ U ) be
the set of Web pages for each, of which the fine-tuned VGG16 model returns the

output value greater than or equal to the lower bound θlbd : S+ (θlbd ) =
{
x ∈

U
���siдmoid (x ) > θlbd

}
. Let S− (θlbd ) (⊆ U ) be the complement set of S+ (θlbd ):

S− (θlbd ) = S+ (θlbd ) = U − S+ (θlbd ). With the set S+ (θlbd ) satisfying the lower
bound θlbd , recall+ (θlbd ) and precision+ (θlbd ) against the reference set R+ are de-

noted as: recall+ (θlbd ) =

���R+∧S+ (θlbd )
���|R+ | , precision+ (θlbd ) =

���R+∧S+ (θlbd )
���

|S+ (θlbd ) | . Sim-

ilarly, recall− (θlbd ) and precision− (θlbd ) against the reference set R− are also de-

noted as: recall− (θlbd ) =
���R−∧S− (θlbd )

���
|R− | , precision− (θlbd ) =

���R−∧S− (θlbd )
���

|S− (θlbd ) | . In

Figure 3 compares the effect of training with and without fine-

tuning. For the training without fine-tuning, pre-trained parameters

of 13 convolutional layers and 5 intermediate max-pooling layers

are not used as the initial parameter values. However, their initial

parameter values are randomly selected. Then, all of the parame-

ters, the subsequent two fully-connected layers, and the output layer

are trained with the reference training data set. Fine-tuning has a re-

markable effect on training without fine-tuning based on the results

presented in Figure 3(a) that reveals visually intelligible Web pages

and Figure 3(b) that reveals visually unintelligible Web pages.

Figure 4 compares the recall-precision curves for detecting visu-

ally intelligible / unintelligible Web pages. As shown in Figure 4(b),

without fine-tuning, detecting visually intelligible Web pages is eas-

ier than detecting visually unintelligible Web pages. However, as

shown in Figure 4(a), detecting visually intelligible Web pages is

easier than detecting visually unintelligible Web pages when the

number of training samples is 5/10 and 1/10. When the number is

10/10, the two recall-precision curves are almost comparable. From

these results, we can conclude that, when the two conditions (a)

have a sufficient number of training samples and (b) apply fine-

tuning, the difficulties of detecting visually intelligible / unintelli-

gible Web pages are comparable. Otherwise, the task of detecting

visually intelligible Web pages is easier than that of detecting visu-

ally unintelligible Web pages.

Finally, for all the cases, recall-precision curves are unsaturated

when increasing the number of training samples from 1/10 to 10/10.

This finding means that preparing a larger number of training sam-

ples improves the performance of detecting visually intelligible /

unintelligible Web pages.

5 IDENTIFYING FACTORS OF VISUAL
INTELLIGIBILITY

5.1 Grad-CAM
We employ Grad-CAM [14]11 to identify factors of visual intel-

ligibility for Web pages in explaining academic concepts, whose

overview is shown in Figure 5. The Grad-CAM mechanism com-

putes the gradient for each feature map k (k = 1, . . . ,512). Then,

the gradients are considered neuron importance weights of feature

maps, generating weighted feature maps. At Grad-CAM [14], ReLU

function is applied to the weighted feature maps, and negative val-

ues are removed before Grad-CAM localization (heatmap) is com-

puted. Grad-CAM localization (heatmap) represents where the model

has to look to make particular decision. Unlike the original Grad-

CAM [14], we compute the Grad-CAM localization (heatmap) of

the class of visual intelligibility and unintelligibility. Instead of re-

moving negative values of gradients, we consider negative values

of the gradients to indicate a negative influence on the visual in-

telligibility and interpret it as having a positive influence on the

class of visual unintelligibility. Finally, the Grad-CAM localization

(blue and red heatmaps) is computed as shown in Figure 5. The

the evaluation, the lower bound θlbd of the output value returned by the sigmoid func-
tion of the output layer is increased from 0.0 to 1.0 with 0.05 increments in between,
and the recall-precision curves are plotted and compared.
11 One alternative approach is to employ saliency map [3, 6], where a deep neural
network approach is not required, but it can be applied to any framework. However,
it performed worse than the Grad-CAM approach. Thus, this paper reports a detailed
approach and evaluation results of Grad-CAM only but not the saliency map approach.
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(a) for visually intelligible Web pages (b) for visually unintelligible Web pages

Figure 3: Evaluation Results of Measuring Visual Intelligibility (1) (comparing with/without fine-tuning)

(a) with fine-tuning (b) without fine-tuning

Figure 4: Evaluation Results of Measuring Visual Intelligibility (2) (comparing tasks of detecting Web pages of positive/negative
classes: positive: visually intelligible Web pages, negative: visually unintelligible Web pages)
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Figure 5: Identifying Factors of Web Page Visual Intelligibility by Grad-CAM

academic field: statistics,

the manual judgment of visual intelligibility: positive,

prob. of measuring visual intelligibility: 0.99,
(a) rank of evaluation result: 4

academic field: statistics,

the manual judgment of visual intelligibility: negative,

prob. of measuring visual intelligibility: 0.01,
(b) rank of evaluation result: 3

academic field: statistics,

the manual judgment of visual intelligibility: positive,

prob. of measuring visual intelligibility: 0.99,
(c) rank of evaluation result: 2

academic field: chemistry,

the manual judgment of visual intelligibility: negative,

prob. of measuring visual intelligibility: 0.33,
(d) rank of evaluation result: 1

Figure 6: Examples of Identifying Factors of Visual Intelligibility by Grad-CAM
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Table 3: Manual Evaluation Criterion of Identifying Factors of
Visual Intelligibility

rank description

4 Within the input image, more than or equal

to 80% are overlapped between the region au-

tomatically identified by the proposed model

(Grad-CAM) and the manually identified ref-

erence region. Moreover, the polarities of visu-

ally intelligible / unintelligible agree. (For the

remaining less than 20% overlapped region, it

does not matter even if their polarities disagree.)

3 Within the input image, 60−80% are overlapped

between the region automatically identified by

the proposed model (Grad-CAM) and the man-

ually identified reference region. Moreover, the

polarities of visually intelligible / unintelligible

agree. (For the remaining less than 40% over-

lapped region, it does not matter even if their

polarities disagree.)

2 Within the input image, more than or equal

to 30% are overlapped between the region au-

tomatically identified by the proposed model

(Grad-CAM) and the manually identified refer-

ence region. It does not matter if their polarities

of visually intelligible / unintelligible disagree.

(The region where their polarities agree should

be less than 60%.)

1 Within the input image, less than 30% are over-

lapped between the region automatically iden-

tified by the proposed model (Grad-CAM) and

the manually identified reference region.

blue region has a positive influence on the class of visual intelligi-

bility, whereas the red region has a negative influence on the class

of visual intelligibility. Thus, a positive influence on the class of vi-

sual unintelligibility. The model looks at the blue and red regions to

make decisions on visual intelligibility / unintelligibility.

Compared with the saliency map approach [3, 6], the advantages

of Grad-CAM are (i) localization heatmap computation is efficient,

and (ii) broad region within the input image can be detected, for

instance, the background region and blank region have an influence

on a particular class. Its disadvantage depends on the architecture of

the model, such as the neural network structure. Once the architec-

ture of the model is revised, the Grad-CAM formalization is revised

in accordance with the revision of the model architecture.

5.2 Evaluation
We manually examine the overlap between the region automatically

identified by the proposed model (Grad-CAM) and the manually

identified reference region to evaluate whether their polarities of

visually intelligible / unintelligible agree / disagree. Then, the man-

ual evaluation result is graded into four ranks in accordance with

the evaluation criterion shown in Table 3. Table 4 shows the de-

tailed evaluation result, where, for each of the 10 ranges measuring

Table 4: Evaluation Results of Identifying Factors of Visual In-
telligibility

prob. of ranks of manual evaluation
measuring

visual
intelligibility

4 (%) 3 (%) 2 (%) 1 (%) total

0.0 − 0.1 11 (8.5) 55 (42.6) 56 (43.4) 7 (5.4) 129

0.1 − 0.2 0 (0.0) 6 (60.0) 3 (30.0) 1 (10.0) 10

0.2 − 0.3 0 (0.0) 2 (28.6) 5 (71.4) 0 (0.0) 7

0.3 − 0.4 0 (0.0) 1 (33.3) 1 (33.3) 1 (33.3) 3

0.4 − 0.5 1 (11.1) 3 (33.3) 5 (55.6) 0 (0.0) 9

0.5 − 0.6 0 (0.0) 0 (0.0) 3 (75.0) 1 (25.0) 4

0.6 − 0.7 0 (0.0) 3 (37.5) 5 (62.5) 0 (0.0) 8

0.7 − 0.8 0 (0.0) 2 (25.0) 6 (75.0) 0 (0.0) 8

0.8 − 0.9 0 (0.0) 6 (85.7) 1 (14.3) 0 (0.0) 7

0.9 − 1.0 4 (3.5) 41 (35.7) 61 (53.0) 9 (7.8) 115

total 16 (5.3) 119 (39.7) 146 (48.7) 19 (6.3) 300

visual intelligibility by VGG16, the proportion of the four ranks (4,

3, 2, and 1) is shown. Based on the results, most test samples are

ranked 2 or above within the ranges of 0.2−0.9 for measuring vi-

sual intelligibility. Overall, the rate of ranks 3 or 4 is approximately

45%, which is higher than that of the saliency map approach [3, 6]

(approximately 15% in our implementation and evaluation).

Figure 6 shows the examples of Grad-CAM that identify factors

of visual intelligibility, where the identified factors are shown as

the blue and red heatmaps. Figures 6(a) − 6(d) show the factors

ranked as 4−1, respectively. For each case, along with the manually

judged visual intelligibility as positive or negative, the probability

of measuring visual intelligibility by VGG16 is shown. As shown

in Figures 6(a) and 6(b), when the rank is 3 or higher, text regions

whose size is relatively larger than a certain upper bound and adver-

tisement region are identified as visually unintelligible and painted

with red in the heatmap. Similarly, regions of figures and menu bars

are identified as visually intelligible and painted with blue in the

heatmap. In the case of Figure 6(c) where the rank is 2, the regions

identified by the Grad-CAM overlap with the reference regions,

whereas their polarities are opposite. Specifically, regions of figures

and menu bars are identified as visually unintelligible and painted

with red in the heatmap, as opposed with the reference polarity.

Furthermore, in the case of rank 1 as in Figure 6(d), the regions

identified by the Grad-CAM are not overlapped with the reference

regions. Specifically, the regions identified as visually intelligible

and painted with blue in the heatmap are mostly not overlapped

with the reference regions.

6 CONCLUDING REMARKS
Based on the motivation to find beginner-friendly Web pages in ex-

plaining academic concepts, this study focused on visual intelligi-

bility of Web pages. Future work includes (i) applying a general

XAI framework by Ribeiro et al. [12] to the task of identifying the

factors of Web page visual intelligibility in explaining academic

concepts, (ii) inventing a technique for the automatic induction in

analyzing and classifying the identified factors of visual intelligi-

bility and (iii) evaluating the proposed framework through a behav-

ioral study to predict actual learning gains of human students.
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