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ABSTRACT
Collaborative filtering based algorithms, including Recurrent Neu-
ral Networks (RNN), tend towards predicting a perpetuation of
past observed behavior. In a recommendation context, this can lead
to an overly narrow set of suggestions lacking in serendipity and
inadvertently placing the user in what is known as a "filter bubble."
In this paper, we grapple with the issue of the filter bubble in the
context of a course recommendation system in production at a
public university. Most universities in the United States encourage
students to explore developing interests while simultaneously ad-
vising them to adhere to course taking norms which progress them
towards graduation. These competing objectives, and the stakes
involved for students, make this context a particularly meaningful
one for investigating real-world recommendation strategies. We
introduce a novel modification to the skip-gram model applied to
nine years of historic course enrollment sequences to learn course
vector representations used to diversify recommendations based
on similarity to a student’s specified favorite course. This model,
which we call multifactor2vec, is intended to improve the seman-
tics of the primary token embedding by also learning embeddings
of potentially conflated factors of the token (e.g., instructor). Our
offline testing found this model improved accuracy and recall on
our course similarity and analogy validation sets over a standard
skip-gram. Incorporating course catalog description text resulted
in further improvements. We compare the performance of these
models to the system’s existing RNN-based recommendations with
a user study of undergraduates (N = 70) rating six characteristics
of their course recommendations. Results of the user study show a
dramatic lack of novelty in RNN recommendations, a consequence
of the filter bubble, and depict the characteristic trade-offs that
make serendipity difficult to achieve.
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1 INTRODUCTION
Among the institutional values of a liberal arts university is to
expose students to a variety of perspectives expressed in courses
across its various physical and intellectual schools of thought. Col-
laborative filtering based sequence prediction methods, in this envi-
ronment, can provide personalized course recommendations based
on temporal models of normative behavior [22] but are not well
suited for surfacing courses a student may find interesting but
which have been relatively unexplored by those with similar course
selections to them in the past. Therefore, a more diversity oriented
model can serve as an appropriate compliment to recommendations
made from collaborative based methods. This problem of training
on the past without necessarily repeating it is an open problem
in many collaborative filtering based recommendation contexts,
particularly social networks, where, in the degenerate cases, users
can get caught in "filter bubbles," or model-based user stereotypes,
leading to a narrowing of item recommendation variety [14, 20, 30].

We introduce a novel skip-gram model variant into a production
recommender system at a public university designed to surface
serendipitous course suggestions. We use the definition of serendip-
ity as user perceived unexpectedness of result combined with suc-
cessfulness [26], which we define as a course recommendation the
student expresses interest in enrolling in. At many universities, con-
ceptually similar courses exist across departments but use widely
differing disciplinary vernacular in their catalog descriptions, mak-
ing them difficult for learners to search for and to realize their
commonality. We propose that by tuning a vector representation of
courses learned from nine years of enrollment sequences, we can
capture enough implicit semantics of the courses to more abstractly,
and accurately construe similarity. To encourage the embedding
to learn features that may generalize across departments, our skip-
gram variants simultaneously learns department (and instructor)
embeddings. While more advanced attention-based text generation
architectures exist [28], we demonstrate that properties of the linear
vector space produced by "shallow" networks are of utility to this
recommendation task. Our recommendations are made with only a
single explicit course preference given by the user, as opposed to the
entire course selection history needed by session-based Recurrent
Neural Network approaches [11]. Single example, also known as
"one-shot," generalization is borrowed from the vision community,
which has pioneered approaches to extrapolating a category from
a single labeled example [9, 29].

Other related work applying skip-grams to non-linguistic data
include node embeddings learned from sequences of random walks
of graphs [25] and product embeddings learned from ecommerce
clickstream [5]. Our work, methodologically, adds rigor to this ap-
proach by tuning the model against validation sets created from
institutional knowledge and curated by the university. We conduct
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a user study (N = 70) of undergraduates at the university to evalu-
ate their personalized course recommendations made by models
designed for serendipity and by the RNN-based recommendations,
which previously existed in the system. The findings underscore
the tension between unexpectedness and successfulness and show
the superiority of the skip-gram based method, as well as a bag-
of-words baseline, for producing serendipitous results. From the
open-response feedback received from students, we determined
that the RNN-based recommendations still had a role to play, not
in course exploration, but as a normative sorting of the order in
which similar students had satisfied course requirements.

2 RELATEDWORK
In Natural Language Processing, a classical representation of words
is as a vector of the contexts they appear in, equivalent to aword2vec
model Mikolov et al. [19] without its hidden layer. Such vector
representations are called explicit, as each dimension directly cor-
responds to a particular context [16]. These explicit vector-space
representations have been extensively studied in the NLP literature
[3, 27], and are known to exhibit a large amount of attributional
similarity [15, 17, 24]. Although Baroni et al. [2] show that the neu-
ral embeddings obtain a substantial improvement against explicit
representations on a wide range of lexical semantics tasks, Levy
and Goldberg [16] argue that under certain conditions traditional
word similarities induced by explicit representations can perform
just as well on lexical relationship validation sets. Their debates
encourage us to utilize course descriptions to generate explicit
bag-of-words representations for courses and compare them to our
neural embedding models.

Nguyen et al. [20] measured the "filter bubble" effect in terms of
content diversity at the individual level and found that collaborative
filtering-based recommender systems expose users to a slightly nar-
rowing set of items over time. McNee et al. [18] also proposed that
the recommender community should move beyond conventional
accuracy metrics and their associated experimental methodologies.
To counter the "filter bubble", Zhang et al. [30] used a collection
of novel LDA-based algorithms inspired by principles of "serendip-
itous discovery" and injected serendipity, novelty, and diversity
to music recommendations whilst limiting the impact on accu-
racy. Different serendipitous metrics that measure the uncertainty
and relevance of user’s attitude towards items in order to mitigate
the over-specialization problem with surprising suggestions are
combined with traditional collaborative filtering recommendation
[12] and content-based recommendation [1]. Kawamae et al. [13]
presented the Personal Innovator Degree (PID) which focused on
the dynamics and precedence of user preference to recommend
items that match the latest preference of the target user to achieve
serendipity.

Recommender systems in higher education contexts have re-
cently focused on prediction of which courses a student will take
or the grade they will receive if enrolled. At Stanford, a system
called "CARTA" allows students to see grade distributions, course
evaluations, and the most common courses taken before a course
of interest [4]. At UC Berkeley, our AskOski1 recommender, named
after the school’s mascot, serves students next-semester course

1https://askoski.berkeley.edu

considerations based on their personal course enrollment history
[22]. Earlier systems included a focus on requirement satisfaction
[21] and career-based relevancy recommendation [8]. No system
has yet focused on serendipitous or novel course discovery.

3 MODELS AND METHODOLOGY
This section introduces three competing models used to gener-
ate our representations. The first model uses the skip-gram model,
which we refer to as course2vec in this context, to learn course repre-
sentations from enrollment sequences. Our second model is a novel
variant on the skip-gram, introduced in this paper, which learns
representations of explicitly defined features of a course (such as the
instructor or department) in addition to the course representation.
The intuition behind this approach is that the course representation
could have, conflated in it, the influence of the multiple-instructors
that have taught the course over the years. In order to separate
out the department material of the course from the instructor, we
allow for an instructor representation to be learned at the same
time, but separate from the course representation. We contend that
this may increase the fidelity of the course representation and serve
as a more accurate representation of the essence of the course. The
last representation model is a standard bag-of-words, constructed
from course descriptions. In the last subsection, we describe the
algorithm used to surface serendipitous recommendations using
these course representations.

3.1 Course2vec
The course2vec model involves learning distributed representations
of courses from students’ enrollment records throughout semesters
by using a notion of a enrollment sequence as a "sentence" and
courses within the sequence as "words", borrowing terminology
from the linguistic domain. For each student s, his/her chronological
course enrollment sequence is produced by first sorting by semester
then randomly serializing within-semester course order. Then, each
course enrollment sequence is trained on like a sentence in the Skip-
gram model. The formulation of the course2vec model is presented
in our supplement (section 10.1).

In language models, two word vectors will be cosine similar if
they share similar sentence contexts. Likewise, in the university
domain, courses that share similar co-enrollments, and similar pre-
vious and next semester enrollments, will likely be close to one
another in the vector space. Course2vec learns course representa-
tions using a skip-gram model [19] by maximizing the objective
function over all the students’ course enrollment sequences.

3.2 Multi-factor Course2vec
The training objective of the skip-gram model is to find word repre-
sentations that are useful for predicting the surrounding words in a
sentence or a document. Each word in the corpus is used as an input
to a log-linear classifier with continuous projection layer, to predict
words within a certain range before and after the current word.
Therefore, the skip-gram model can be also deemed as a classifier
with input as a target course and output as a context course. In this
section, we consider adding more features of courses to the input
to enhance the classifier and its representations, as shown in Figure
1. Each course is taught by one or several instructors over the years
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Figure 1: multi-factor course2vec model

and is associated with an academic department. The multi-factor
course2vec model learns both course and feature representations by
maximizing the objective function over all the students’ enrollment
sequences and the features of courses, defined as follows.∑

s ∈S

∑
ci ∈s

∑
−w<j<w, j,0

logp(ci+j |ci , fi1, fi2, ..., fih ) (1)

Probability p(ci+j |ci , fi1, fi2, ..., fih ) of observing a neighboring
course ci+j given the current course ci and its features fi1, fi2, ..., fih
can also be defined via the softmax function,

p(ci+j |ci ) =
exp(aTi v

′
i+j )∑n

k=1 exp(a
T
i v

′
k )

(2)

ai = vi +
h∑
j=1

Wnj×v fi j (3)

where ac is the vector sum of input course vector representation
vc and all the features vector representations of that course, fi j
is the multi-hot input of the j-th feature of course i , andWnj×v is
the weight matrix for feature j. So by multiplyingWnj×v and fi j ,
it gets the sum of feature vector representations of the i-th course.
Here we keep the vector dimensions the same for both courses and
features so that they are learned and mapped to the same vector
space.

3.3 Bag-of-Words
A simple but indelible approach to item representation has been to
create a vector, the length of the number of unique words across all
items, with a non-zero value if the word in the vocabulary appears
in it. Only unigram words are used to create this unordered vector
list of words used to represent the document [6].

The basic methodology based on bag-of words proposed by IR
researchers for text corpora - a methodology successfully deployed
in modern Internet search engines - reduces each document in the
corpus to a vector of real numbers, each of which represents a term
weight. The term weight might be:

• a term frequency value indicating how many times the term
occurred in the document.

• a binary value with 1 indicating that the term occurred in
the document, and 0 indicating that it did not.

• tf-idf scheme [7], the product of term frequency and inverse
document frequency, which increases proportionally to the
number of times a word appears in the document and is
offset by the frequency of the word in the corpus and helps
to adjust for the fact that somewords appear more frequently
in general.

We evaluate all three variants in our quantitative validation testing.

3.4 Surfacing Serendipitous Recommendations
from Course Representations

We surface recommendations intended to be interesting but unex-
pected by finding an objective course c j which is most similar to a
student’s favorite course ci but diversifying the results by allowing
only one result per department dj :

c∗j = argmax
c,d (c)=dj

cos(c, ci ) (4)

where d(c) means the the department of course c . Then all the
counterpart courses c∗j in all the other departments will be ranked
according to cos(c∗j , ci ), where j = 1, 2...,k . We can apply both neu-
ral representations and bag-of-words representations of courses in
this method to generate the most similar courses in each depart-
ment.

4 EXPERIMENTAL ENVIRONMENTS
4.1 Off-line Dataset
We used a dataset containing anonymous student course enroll-
ments at UC Berkeley from Fall 2008 through Fall 2017. The dataset
consists of per-semester course enrollment records for 164,196 stu-
dents (both undergraduates and graduates) with a total of 4.8million
enrollments. A course enrollment record means that the student
was still enrolled in the course at the end of the semester. Students
at this university are allowed to drop courses up until close to the
end of the semester without penalty. The median course load dur-
ing students’ active semesters was four. There were 9,478 unique
lecture courses from 214 departments2 hosted in 17 different Di-
visions of 6 different Colleges. Course meta-information contains
course number, department name, total enrollment and max capac-
ity. In this paper, we only consider lecture courses with at least
20 enrollments total over the 9-year period, leaving 7,487 courses.
Although courses can be categorized as undergraduate courses and
graduate courses, all the students are allowed to enroll in many of
the graduate courses no matter their status. Enrollment data were
sourced from the campus enterprise data warehouse with course
descriptions sourced from the official campus course catalog API.
We pre-processed the course description data in the following steps:
(1) removing generic, often-seen, sentences across descriptions (2)
removing stop words (3) removing punctuation (4) word lemma-
tization and stemming, and finally tokenizing the bag-of-words
in each course description. We then compile the term frequency
vector, binary value vector, and tf-idf vector for each course.

2At UC Berkeley, the smallest academic unit is called a "subject." For the purpose of
communicability, we instead refer to subjects as departments in this paper.



KDD ’19, August 04–08, 2019, Anchorage, AK Pardos and Jiang

4.1.1 Semantic Validation Sets. In order to quantitatively evaluate
how accurate the vector models are, a source of ground truth on
the relationships between courses needed to brought to bear to
see the degree to which the vector representations encoded this
information. We used two such sources of ground truth to serve as
validation sets, one providing information on similarity, the other
on a variety of semantic relationships.

• Equivalency validation set: A set of 1,351 course credit-equivalency
pairs maintained by the Office of the Registrar were used for
similarity based ground truth. A course is paired with an-
other course in this set if a student can only receive credit for
taking one of the courses. For example, an honors and non-
honors version of a course will be appear as a pair because
faculty have deemed that there is too much overlapping ma-
terial between the two for a student to receive credit for
both.

• Analogy validation set: The standard method for validating
learned word vector has been to use analogy to test the de-
gree to which the embedding structure contains semantic
and syntactic relationships constructed from prior knowl-
edge. In the domain of university courses, we use course
relationship pairs constructed from prior work using first-
hand knowledge of the courses [23]. The 77 relationship
pairs were in five categories; online, honors, mathematical
rigor, 2-department topics, and 3-department topics. An ex-
ample of an "online" course pair would be Engineering 7 and
its online counterpart, Engineering W7 or Education 161
and W161. An analogy involving these two paris could be
calculated as; Engineering 7W - Engineering 7 + Education
161 = Education W161.

4.2 Online Environment (System Overview)
The production recommender system at UC Berkeley uses a stu-
dent data pipeline with the enterprise data warehouse to keep
up-to-date enrollment histories of students. Upon CAS login, these
histories are associated with the student and passed through an
RNN model, which cross-references the output recommendations
with the courses offered in the target semester. Class availability
information is retrieved during the previous semester from a cam-
pus API once the registrar has released the schedule. The system is
written with an AngularJS front-end and python back-end service
which loads the machine learned models written in pyTorch. These
models are version controlled on github and refreshed three times
per semester after student enrollment status refreshes from the
pipeline. The system receives traffic of around 20% of the under-
graduate student body from the UC Berkeley Registrar’s website.

5 VECTOR MODEL REFINEMENT
EXPERIMENTS

In this section, we first introduce our experiment parameters and
the ways we validated the representations quantitatively. Then, we
describe various ways we refined the models and the results of
these refinement.

5.1 Model Evaluations
We trained the models described in Section 3 on the students en-
rollment records data set. Specifically, we added the instructor(s)
who teach the course and the course department as two features
of courses in the multi-factor course2vec model. To ensure repro-
ducibility, we put our model experiment settings to our supplement
(section 10.2).

To evaluate course vectors on the course equivalency validation
set, we fixed the first course in each pair and rank all the other
courses according to their cosine similarity to the first course in
descending order. We then noted the rank of the expected second
course in the pair and describe the performance of each model
on all validation pairs in terms of of mean rank, median rank and
recall@10.

For evaluation of the course analogy validation set, we followed
the paradigm of analogy: course2 − course1 + course3 ≈ course4.
Courseswere ranked by their cosine similarity to course2−course1+
course3. An analogy completion is considered accurate (a hit) if
the first ranked course is the expected course4 (excluding the other
three from the list). We calculated the average accuracy (recall@1)
and the recall@10 over all the analogies in the analogy validation
set.

5.2 Course2vec vs. Multi-factor Course2vec
In this section, we first compared the pure course2vec model with
the course representations from the multi-factor course2vec model
using instructor, department, and both as factors. To further explore
improvements to performance, we concatenated the primary course
representational layer (Wn×v in Figure 1) with the output represen-
tation layer (W ′

v×n in Figure 1), as demonstrated to be effective in
the language domain [10].

Results of evaluation on the equivalency validation are shown
in Table 1 with analogy validation results shown in Table 2. Models
using the output representation concatenation are labeled with
"(+out)" next to their names in both tables. The multi-factor model
outperformed the pure course2vec model in terms of recall@10 in
both validation sets, with the combined instructor and department
factor model performing the best. The same result held for the
metrics of mean and median rank in equivalency, but multi-factor
models were not always the best in terms of analogy recall@1
(Accuracy). Output layer concatenation did not improve any of the
models on the equivalency validation but, interesting, improved
all but the instructor model (recall@10) in the analogy validation
set. The best recall achieved in analogies was by the instructor and
department multi-factor model, successfully completing 85.57% of
course analogies when considering the top 10 candidates of each
analogy completion.

For results in the following sections, we will use the non output
concatenation versions of course2vec for equivalency validation
comparisons and the concatenation versions for analogies valida-
tion comparison.

5.3 Bag-of-words vs. Multi-factor Course2vec
Among the three bag-of-words models, tf-idf performs the best in all
equivalency set metrics, as seen in Table 1. Themedian rank (best=4)
and recall@10 (best=0.5647) for the bag-of-words models were also
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Table 1: Equivalency validation of all the models

Model Mean / Median
Rank

Recall
@10

course2vec 244 / 21 0.3839
course2vec (+out) 270 / 26 0.3430
ins-course2vec 302 / 16 0.4406

ins-course2vec (+out) 400 / 32 0.3478
dept-course2vec 261 / 17 0.4005

dept-course2vec (+out) 306 / 19 0.3721
ins-dept-course2vec 224 / 15 0.4485

ins-dept-course2vec (+out) 201 / 16 0.4312
tf 589 / 5 0.5451

binary 612 / 6 0.5308
tf-idf 566 / 4 0.5647

tf+insdept-course2vec 168 / 6 0.5691
tf+insdept-course2vec (norm) 132 / 3 0.6371

bin.+insdept-course2vec 178 / 7 0.5404
bin.+insdept-course2vec (norm) 129 / 3 0.6251

tfidf+insdept-course2vec 213 / 14 0.4428
tfidf+insdept-course2vec (norm) 132 / 3 0.6435

Table 2: Analogy validation of all the models

Model Accuracy Recall@10

course2vec 0.4739 0.7539
course2vec (+out) 0.5011 0.7685
ins-course2vec 0.5025 0.8094

ins-course2vec (+out) 0.5138 0.7853
dept-course2vec 0.3504 0.8257

dept-course2vec (+out) 0.3581 0.8284
ins-dept-course2vec 0.4784 0.8434

ins-dept-course2vec (+out) 0.4961 0.8557
tf 0.3037 0.537

binary 0.3159 0.581
tf-idf 0.3227 0.542

tf+insdept-course2vec 0.5066 0.8438
tf+insdept-course2vec (norm) 0.448 0.6872
bin.+insdept-course2vec 0.5193 0.8788

bin.+insdept-course2vec (norm) 0.4603 0.7449
tfidf+insdept-course2vec 0.5138 0.8584

tfidf+insdept-course2vec (norm) 0.4503 0.7059

substantially better than the best course2vec models, which had
a best median rank of 15 with best recall@10 of 0.4485 for the
instructor and department model. All course2vec models; however,
showed better mean rank performance (best=224) compared with
bag-of-words (best=566). This suggests that there are many outliers
where literal semantic similarity (bag-of-words) is very poor at
identifying equivalent pairs, whereas course2vec has much fewer
near worst-case examples. This result is consistent with prior work
comparing pure course2vec models to binary bag-of-words [22].

When considering performance on the analogy validation (Table
2), the roles are reversed, with all course2vecmodels performing bet-
ter than the bag-of-words models in both accuracy and recall@10.
The difference in recall of bag-of-words compared to course2vec
when it comes to analogies is substantially greater (0.581 vs 0.8557),

than the superiority difference of bag-of-words over course2vec
in the equivalency validation (0.5647 vs 0.4485). These analyses es-
tablish that bag-of-words models are supreme in capturing course
similarity, but are substantially inferior to our skip-gram based
models in the more complex task of analogy completion.

The comparison of course2vec related models and bag-of-words
models on equivalency validation and analogy validation is to some
extent counter to Levy and Goldberg [16]’s argument that Mikolov
et al. [19]’s word analogy exploring method of first adding and sub-
tracting word vectors, and then searching for a word similar to the
result, is equivalent to searching for a word that maximizes a linear
combination of three pairwise word similarities, instead of vec-
tor offsets encoding relational semantics. Otherwise, bag-of-words
representations should also performs better on course analogies if
the calculation on finding analogies is also based on cosine simi-
larities. On top of that, all the neural embeddings perform better
than bag-of-words representations on both accuracy and recall@10,
which surfaces the signal that there is also relational semantics
conveyed from course enrollment behaviors but not encoded in
course semantic descriptions.

5.4 Combining Bag-of-words and Course2vec
Representations

In light of the strong analogy performance of course2vec and strong
equivalency performance bag-of-words in the previous section, we
use the neural embeddings learned bymult-factor course2vec which
incorporates both instructor and department to concatenate with
bag-of-words representations. To counterbalance the different mag-
nitudes of neural embeddings and bag-of-words representations,
we create a normalized version of each vector set for comparison
to non-normalized sets.

We find that the normalized concatenation performs substan-
tially better on the equivalency test than the previous best model in
terms of recall@10 (0.6435 vs. 0.5647) as seen in Table 1. While the
median rank of the concatenated model only improved one rank,
from 4 to 3, the mean rank improved dramatically (from 566 to 132),
and is the best of all models tested in terms of mean rank. Non-
normalized vectors did not show improvements over bag-of-words
alone in median rank and recall@10. Improvements in the analogy
test (Table 2) were much more mild, with a recall@10 of 0.8788
of the best concatenated model vs. 0.8557 of the best course2vec
only model. Normalization in the case of analogies, hurt all model
performance, the opposite of what was observed in the equivalency
test. This suggests that normalization improves local similarity but
acts to degrade the more global structure of the vector space.

6 USER STUDY
A user study was conducted to evaluate differences in recommenda-
tions among our developed representation based recommendation
algorithms along five dimensions of quality. Students were asked to
rate course recommendations in terms of their (1) unexpectedness
(2) successfulness - or interest in taking the course (3) novelty (4)
diversity of the results (5) and identifiable commonality among the
results. Shani and Gunawardana [26] define serendipity as the com-
bination of "unexpectedness" and "success." In the case of a song
recommender, for example, success would be defined as the user
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listening to the recommendation. In our case, we use a student’s
expression of interest in taking the course as a proxy for success.
The mean of their unexpectedness and successfulness rating will
comprise our measure of serendipity. We evaluated three of our de-
veloped models, all of which displayed 10 results, only showing one
course per department in order to increase diversity (and unexpect-
edness). The models were (1) the best BOW model (tf-idf), (2) the
best Analogy validation model (bin.+insdept-course2vec), (3) and
the best Equivalency validation model (tfidf+insdept-course2vec
norm). To measure the impact our department diversification filter
would have on serendipity, we added a version of the best Equiva-
lencymodel that did not impose this filter, allowingmultiple courses
to be displayed from the same department if they were the most
cosine similar to the user’s specified favorite course. Our fifth com-
parison recommendation algorithm was a collaborative-filtering
based Recurrent Neural Network (RNN) that recommends courses
based on a prediction of what the student is likely to take next given
their personal course history and what other students with a similar
history have taken in the past [22]. We put a brief summary of the
collaborative-filtering based Recurrent Neural Network (RNN) rec-
ommendation algorithm to our supplement (section 10.3). All five
algorithms were integrated into a real-time recommender system
for the purpose of this study and evaluated by 70 undergraduates
at the university.

6.1 Study Design
Undergraduates were recruited from popular university associated
Facebook groups and asked to sign-up for a one hour evaluation
session. Since they would need to specify a favorite course they
had taken, we restricted participants to those who had been at the
university at least one full semester and were currently enrolled.
The study was run at the beginning of the Fall semester, while
courses could still be added and dropped and some students were
still shopping for courses. We used a within-departments design
whereby each volunteer rated ten course recommendations made
by each of the five algorithms. Because of the considerable number
of ratings expected ([3*10+2]*5 = 160) and the importance for stu-
dents to carefully consider each recommended course, in-person
sessions were decided on over asynchronous remote in order to
better encourage on-task behavior throughout the session. Student
evaluators were compensated with a $40 gift card to attend one of
four sessions offered across three days with a maximum occupancy
of 25 each session. A total of 703 students participated.

We began the session by introducing the evaluation motivation
as a means for students to help inform the choice of algorithm that
we will use for a future campus-wide deployment of a course ex-
ploration tool. Students started the evaluation by visiting a survey
URL that asked them to specify a favorite course they had taken
at the university. This favorite course was used by the first four
algorithms to produce 10 course recommendations each, which
included the course’s department, course number, title, and full
catalog description. There was a survey page for each algorithm

3Due to an authentication bug during the fourth session, all twenty participating stu-
dents were not able to access the collaborative recommendations of the fifth algorithm.
RNN results in the subsequent section are therefore based on the 50 students from the
first three sessions. When paired t-tests are conducted between RNN and the ratings
of other algorithms, the tests are between ratings among these 50 students.

in which students were asked to read the course descriptions care-
fully and then rate each of the ten courses individually for their five
point Likert scale agreement with the following statements: (1) This
course was unexpected (2) I am interested in taking this course (3)
I did not know about this course before. These ratings respectively
measured unexpectedness, successfulness, and novelty. After rating
the individual courses, students were asked to rate their agreement
with the following statements pertaining to the results as a whole:
(1) Overall, the course results were diverse (2) The course results
shared something in common with my favorite course. These rat-
ings measured dimensions of diversity and commonality. Lastly,
students were asked to provide an optional follow-up open text
response to the question, "If you identified something in common
with your favorite course, please explain it here." On the last page
of the survey, students were asked to specify their major, year,
and to give optional open response feedback on their experience.
Graduate courses were not included in the recommendations and
the recommendations were not limited to courses available in the
current semester.

6.2 Results
Results of average student ratings of the five algorithms across
the six measurement categories are shown in Table 3. The diver-
sity based algorithms, denoted by "(div)," all scored higher than
the non-diversity (non-div) algorithms in unexpectedness, novelty,
diversity, and the primary measure of serendipity. The two non-
diversity based algorithms; however, both scored higher than the
other three algorithms in successfulness and commonality. All pair-
wise differences between diversity and non-diversity algorithms
were statistically significant, using the p < 0.001 level after applying
a Bonferoni correction for multiple (60) tests. Within the diversity
algorithms, there were no statistically significant differences except
for BOW scoring higher than Equivalency (div) on unexpectedness
and scoring higher than both Equivalency (div) and Analogy (div)
on novelty. Among the two non-diversity algorithms, there were
no statistically significant differences except for the RNN scoring
higher on diversity and Equivalency (non-div) recommendations
scoring higher on novelty. With respect to measures of serendipity,
the div and non-div algorithms had similar scores among their re-
spective strengths (3.473-3.619); however, the non-div algorithms
scored substantially lower in their weak category of unexpectedness
(2.091& 2.184) than did the div algorithms in their weak category of
successfulness (2.851-2.999), resulting in statistically significantly
higher serendipity scores for the div algorithms.

The most dramatic difference can be seen in the measure of
novelty, where BOW (div) scored 3.896 and RNN (non-div) scored
1.824, the lowest rating in the results matrix. The proportion of each
rating level given to the two algorithms on this question is shown
in Figures 2 and 3. Hypothetically, an algorithm that recommended
randomly selected courses would score high in both novelty and
unexpectedness, and thus it is critical to also weigh their ability to
recommend courses that are also of interest to students. Figure 4
shows successfulness ratings for each of the algorithms aggregated
by rank of the course result. The non-div algorithms, shown with
dotted lines, always perform as well or better than the non-div al-
gorithms at every rank. The more steeply declining slope of the div
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Table 3: Average student ratings of recommendations from the five algorithms across the six measurement categories.

algorithm unexpectedness successfulness serendipity novelty diversity commonality

BOW (div) 3.550 2.904 3.227 3.896 4.229 3.229
Analogy (div) 3.473 2.851 3.162 3.310 4.286 2.986
Equivalency (div) 3.297 2.999 3.148 3.323 4.214 3.257
Equivalency (non-div) 2.091 3.619 2.855 2.559 2.457 4.500
RNN (non-div) 2.184 3.566 2.875 1.824 3.160 4.140

Figure 2: Novelty rating proportions for BOW (div)

Figure 3: Novelty rating proportions for RNN (non-div)

algorithms depicts the increasing difficulty of finding courses of in-
terest across different departments. The tension between the ability
to recommend courses of interest that are also unexpected is shown
in Figure 5, where BOW (div) is able to recommend courses of in-
terest but low unexpectedness in the top few results. These values
quickly swap places the lower the result ranks go. The non-diversity
algorithms, on the other hand, maintain high successfulness but
also low unexpectedness throughout the 10 result ranks.

Are more senior students less likely to rate courses as novel or
unexpected, given they have been at the university longer and been
exposed to more courses? Among our sophomore (27), junior (22),
and senior (21) level students, there were no statistically significant
trends among the six measures, except for a marginally significant
trend (p = 0.007, shy of the p < 0.003 threshold given the Bonferroni
correction) of more senior students rating recommendations as less
unexpected (avg = 2.921) than juniors (avg = 3.024), whose ratings
were not statistically separable from sophomores (avg = 3.073).

Figure 4: Successfulness comparison

Figure 5: BOW (div) vs. Equivalency (non-div) comparison

6.3 Qualitative Characterization of Algorithms
In this section, we attempt to synthesize qualitative characteriza-
tions of the different algorithms by looking at the open responses
students gave to the question asking them to describe any common-
alities they saw among recommendations made by each algorithm
to their favorite course.

6.3.1 BOW (div). Several students remarked positively about rec-
ommendations matching to the themes of "art, philosophy, and
society" or "design" exhibited in their favorite course. The word
"language" was mentioned by 14 of the 61 respondents answering
the open response question. Most of these comments were negative,
pointing out the limitations of similarity matching based solely
on literal course description matching. The most common critique
given in this category was of the foreign spoken language courses
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that showed up at the lower ranks when students specified a fa-
vorite course involving programming languages. Other students
remarked at the same type of occurrence when specifying a favorite
course related to cyber security, receiving financial security courses
in the results.

6.3.2 Analogy (div). The word "interesting" appeared in seven of
the 54 comments left by students to describe commonalities among
the analogy validation optimized algorithm. This word was not
among the top 10 most frequent words in any of the other four
algorithms. Several students identified broad themes among the
courses that matched to their favorite course, such as "identity" and
"societal development." On the other end of the spectrum, one stu-
dent remarked that the results "felt weird" and were only "vaguely
relevant." Another student stated that, "the most interesting sugges-
tion was the Introduction to Embedded Systems [course] which is
just different enough from my favorite course that it’s interesting
but not too different that I am not interested," which poignantly ar-
ticulates the crux of difficulty in striking a balance between interest
and unexpectedness to achieve a serendipitous recommendation.

6.3.3 Equivalency (div). Many students (seven of the 55) remarked
positively on the commonality of the results with themes of data
exhibited by their favorite course (in most cases STATS C8, an in-
troductory data science course). They mentioned how the courses
all involved "interacting with data in different social, economic,
and psychological contexts" and "data analysis with different ap-
plications." One student remarked on this algorithm’s tendency to
match at or around the main topic of the favorite course, further re-
marking that "they were relevant if looking for a class tangentially
related."

6.3.4 Equivalency (non-div). This algorithm was the same as the
above, except that it did not limit results to one course per depart-
ment. Because of this lack of department filter, 15 of the 68 students
submitting open text responses to the question of commonality
pointed out that the courses returned were all from the same de-
partment. Since this model scored highest on a validation task of
matching to a credit equivalent course pair (almost always in the
same department), it is not surprising that students observed that
results from this algorithm tended to all come from the department
of the favorite course, which also put it close to their nexus of
interest.

6.3.5 RNN (non-div). The RNN scored lowest in novelty, signifi-
cantly lower than the other non-div algorithm, and was not signifi-
cantly different from the other non-div algorithm in successfulness.
In this case, what is the possible utility of the collaborative-based
RNN over the non-div Equivalency model? Many of the 47 (of 50)
student answers to the open response commonality question point
at a potential answer of major related (mentioned by 21 students)
and courses that fulfilled a requirement (mentioned by seven) as the
distinguishing signature of this algorithm. Since the RNN is based
on normative next course enrollment behavior, it is reasonable
that it suggested many courses that satisfy an unmet requirement.
This algorithm’s ability to predict student enrollments accurately
became a detriment to some, as seven remarked that it was rec-
ommending courses that they were currently enrolled in. Due to
the institutional data refresh schedule, student current enrollments

are not known until after the add/drop deadline. This may be a
shortcoming that can be rectified in the future.

7 FEATURE RE-DESIGN
As a result of the feedback received from the user study, we worked
with campus to pull down real-time information on student require-
ment satisfaction from the Academic Plan Review module of the
PeopleSoft Student Information System. we re-framed the RNN fea-
ture as a "Requirements" satisfying feature that, upon log-in, shows
students their personalized list of unsatisfied requirements. After
selecting a requirement category to satisfy, the system displays
courses which satisfy the selected requirement and are offered in
the target semester. The list of courses is sorted by the RNN to
represent the probability that students like them will take the class.
This provides a signal to the student of what the normative course
taking behavior is in the context of requirement satisfaction. For
serendipidous suggestions, we created a separate "Explore" tab (Fig-
ure 6) using the Equivalency (non-div) model to display results of
the top five courses most similar within the same department, due
to its strong successfulness ratings, and the BOW (div) model to
surface the top five courses similar across departments, due to its
strong serendipidous and novelty ratings.

Figure 6: The “Explore" Interface
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8 DISCUSSION
Surfacing courses that are of interest but not known before means
expanding a student’s knowledge and understanding of the Univer-
sity’s offerings. As students are exposed to courses that veer further
from their home department and nexus of interest and understand-
ing, recommendations become less familiar with descriptions that
are harder to connect with. This underscores the difficulty of pro-
ducing an unexpected but interesting course suggestion, as it often
must represent a recommendation of uncommon wisdom in order
to extend outside of a student’s zone of familiarity surrounding
their centers of interest. Big data can be a vehicle for, at times,
reaching that wisdom. Are recommendations useful when they
suggest something expected or already known? Two distinct sets
of responses to this question emerged from student answers to
the last open ended feedback question. One representative remark
stated, "the best algorithms were the ones that had more diverse
options, while still staying true to the core function of the class
I was searching. The algorithms that returned classes that were
my major requirements/in the same department weren’t as helpful
because I already knew of their existence as electives I could be
taking." While a different representative view was expressed with,
"I think the fifth algorithm [RNN] was the best fit for me because
my major is pretty standardized" These two comments make a case
for both capabilities being of importance. They are also a reminder
of the desire among young adults for the socio-technical systems
of the university to offer a balance of information, exploration and
, at times, guidance.

9 LIMITATIONS
The more semantically distal, even if conceptually similar, the less
a student may be able to recognize the commonality with a favorite
course. A limitation of demonstrating the utility of the neural em-
beddings is that students had to rely on the course description
semantics in order to familiarize themselves with the suggested
course. If a concept was detected by the neural embeddings but not
the BOW, this means it may have been difficult for students to pick-
up on this from the descriptions alone. Future evaluations could
include links to additional course information, such as course syllabi.
While our diversity algorithms produced serendipitous recommen-
dations, they will not always produce the desired recommendations
with respect to interest if the most salient features of the course’s
embedding is not what the student most liked about it.
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