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ABSTRACT
This paper describes a psychometrically-based approach to the
measurement of collaborative problem solving skills, by mining
and classifying behavioral data both in real-time and in post-game
analyses. The data were collected from a sample of middle school
children who interacted with a game-like, online simulation of
collaborative problem solving tasks. In this simulation, a user is
required to collaborate with a virtual agent to solve a series of tasks
within a first-person maze environment. The tasks were developed
following the psychometric principles of Evidence Centered Design
(ECD) and are aligned with the Holistic Framework developed by
ACT. The analyses presented in this paper are an application of an
emerging discipline called computational psychometrics which is
growing out of traditional psychometrics and incorporates tech-
niques from educational data mining, machine learning and other
computer/cognitive science fields. In the real-time analysis, our
aim was to start with limited knowledge of skill mastery, and then
demonstrate a form of continuous Bayesian evidence tracing that
updates sub-skill level probabilities as new conversation flow event
evidence is presented. This is performed using Bayes’ rule and
conversation item conditional probability tables. The items are
polytomous and each response option has been tagged with a skill
at a performance level. In our post-game analysis, our goal was to
discover unique gameplay profiles by performing a cluster analysis
of user’s sub-skill performance scores based on their patterns of
selected dialog responses.
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1 INTRODUCTION
Collaborative problem solving (CPS) is considered as one of the
critical skills for academic and career success in the 21st century
[13]. The literature on this topic highlights changing trends that are
leading to more employment opportunities that demand collabora-
tion and interaction between people in problem-solving contexts
[15, 29]. This trend has increased the need in the education indus-
try to address ways to teach and assess these skills [49]. In this
paper we consider the cognitive and social perspectives of the col-
laborative problem solving process and examine the circumstances
under which collaborative problem solving might best take place
to evaluate a participant’s level of competency. We outline a struc-
ture through which the contributing processes can be monitored
and assessed in an electronic environment. In doing so, we refer-
ence an emerging discipline called computational psychometrics
that is growing out of traditional psychometrics and incorporates
techniques from educational data mining, machine learning and
other computer/cognitive science fields. We also introduce our ini-
tial work on a collaborative problem solving simulation in which
a user is required to collaborate with a virtual agent in order to
solve a series of tasks/problems within a first-person maze environ-
ment. We demonstrate two techniques based on our knowledge of
computational psychometrics:

• realtime Bayesian evidence tracing that updates sub-skill
level probabilities as new evidence is presented
• a post-game clustering analysis of a user’s sub-skill perfor-
mance scores aimed at defining different profiles of simula-
tion results

2 MATERIAL AND METHODS
In this section we share our study approach, starting with the iden-
tification and selection of the specific CPS sub-skills we monitored.
We then describe our simulation/game design, task development
and the construction of the conversation tree for the computer
agent. Given these constructs, we detail our methods for compu-
tational psychometric evidence tagging and continuous evidence
tracing. We overview the steps in study execution and data collec-
tion. Finally, we define our postgame analysis process that utilizes
a set of machine-learning based clustering techniques.

2.1 CPS Sub-skills
For this study, our methodology was to first select a set of col-
laborative problem solving sub-skills that have been researched
and published as part of ACT’s investigations into helping people
achieve education and workplace success. In “Beyond Academics:
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A Holistic Framework for Enhancing Education and Workplace
Success," [7] identified facets beyond the well known core academic
skills which include the domain-specific knowledge and skills nec-
essary to perform essential tasks in the core content areas of English
language arts, mathematics, and science. These additional areas
include:

• Cross-cutting capabilities: General knowledge and skills nec-
essary to perform essential tasks across academic content
areas. This includes technology and information literacy, col-
laborative problem solving, thinking and metacognition,
and studying and learning.
• Behavioral skills: The interpersonal, self-regulatory, and task-
related behaviors important for adaptation to, and successful
performance in, education and workplace settings.
• Education and career navigation skills: The personal char-
acteristics, processes, and knowledge that influence indi-
viduals as they navigate their educational and career paths
(e.g., make informed, personally relevant decisions; develop
actionable, achievable plans).

As seen above, the cross-cutting capabilities section of the Holis-
tic Framework includes collaborative problem solving as part of a
broad, four category enumeration:

(1) Technology and Information Literacy
(2) Collaborative Problem Solving
(3) Thinking and Metacognition
(4) Studying and Learning

Within the framework, CPS skills are further decomposed into
various sub-skills and sub-skill areas. For example, sub-skill areas
within CPS include:

• Behavior
• Collaborative Communication
• Problem Analysis
• Solution Planning
• Extended Collaboration (Teamwork)

For this study, we selected 5 sub-skills to gather and analyze for
CPS evidence:

• Feature Identification (FI): Identifies the key features of the
problem space
• Maintaining a Shared Understanding (MU): Identifying and
reconciling gaps in understanding
• Engagement/Interaction (EN): Engagement in the group pro-
cess and the degree to which that engagement is self-initiated
• Strategy (S): Evidence of establishing a plan of action or
policy designed to achieve a major or overall aim
• Evaluate (EV): Recognizing own strengths and weaknesses
in relation to others

2.1.1 CPS Assessments. Society needs assessments that reflect
the way people actually teach, learn and work. There are several
examples of initiatives and assessments which pioneered a large-
scale approach towards measuring CPS skills. These include:

• The Programme for International Student Assessment (PISA)
2015 administered a test of collaborative skills [32]

• The National Center for Educational Statistics (NCES) com-
missioned a white paper on the considerations for intro-
duction of CPS in the National Assessment of Educational
Progress (NAEP) [28]
• An edited interdisciplinary volume on innovative assess-
ments of collaboration was just published with Springer
Verlag [49]
• A special issue of the Journal of Educational Measurement
highlighting recent advances in measurement and assess-
ment of cognitive and noncognitive skills for both individuals
and teams, and innoative ways of studying collaboration in
education. [45]
• The Smarter Balance Consortium developed an assessment
system where performance tasks, including collaborative
tasks, are being considered for administration to students
as a preparatory experience and are then followed with an
individual assessment [10]

CPS skills are important for education and career success, but
they are difficult to measure. Because CPS is largely enacted as an
interactive set of tasks with partners, we need a means to provide
a multi-agent setting in which the subjects under assessment can
express their abilities. This means providing the opportunity to
display the skills in a CPS task for discussion, negotiation, decision
making, etc. with another participant, be they a human or simulated
agent. In either case, all of these interactive data are referred to as
"process data" that offer insight into the interactional dynamics of
team members; they are relevant for defining collaborative tasks
and for evaluating the results of the collaboration. In the past, these
data were not available to scientists at scale. With advances in
technology, these complex data can be captured in computerized
log files and hence, may allow for meaningful inferences.

The process data from CPS tasks consist of time-stamped se-
quences of events. From a statistical perspective, these data are
time series logs describing the actions and interactions of the users.
See [14] for a discussion of the CPS data. In addition to the process
data, if the collaboration is set up in a cognitive (say, math) task,
it will also result in outcome data. These types of data are more
similar to the outcome data from the traditional tests and indicate
if a particular question was answered correctly, or whether the
problem was solved (and to what degree it was solved).

Attempting to measure collaboration using a game or other
virtual environment is not novel. Neither are the ideas of stealth
assessment [37] or evidence centered assessment design [26, 37].
However, it is still common to see measurement of collaboration
provided by post hoc survey data collection [35, 41]. Measuring
through in game data collection techniques holds value, in thatmore
real-time determinations can be made and some of the disadvan-
tages of self-reports [31] can be avoided, such as self-presentation
[33].

2.2 Simulation/Game Design
In order to collect data and test hypotheses for this study, ACT
developed a CPS game called “Circuit Runner"1 which allows sub-
jects to play online, in a web browser, with the mission to solve a
series of challenges in order to “win" the game. The player needs to
1https://cpsgame.stemstudies.com
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collaborate with an automated, virtual agent that has information
required to complete the challenges.

Figure 1: Circuit Runner: A CPS Dialog Panel Game Screen-
shot

In total there are five distinct challenges that range from an
agent/player feature discussion around a coded, door-lock panel to
a more sophisticated challenge that involves collaborative discovery
of a sequence of power transfer steps in order to succeed. The player
navigates from challenge to challenge via a 3-D maze in a first
person perspective and is also given continuous access to the agent
via a dialog panel which can present prompts and dialog responses
from various dialog/conversation trees the playermay select. A view
of the conversation panel within the game is provided in Figure 1.
All of the dialog response selectionsmade by the player are recorded
in a game “conversation flow" log data file. We can think of the
presentation of conversation prompts via the agent as analogous to
the presentation of item prompts in amore conventional assessment.
The selection of conversation choices by the participant result in
item responses captured during the game. Additional telemetry
data is gathered including clicks, keystrokes, distance travelled,
challenge duration, and dialog selection timing.

2.3 Computational Psychometrics
Given these constructs for assessing CPS skills, we consider our
methodological basis applying computational psychometrics [46]
[49]. Computational psychometrics (CP) is defined as a blend of
data-driven computer science methods (machine learning and data
mining, in particular), stochastic theory, and theory-driven psycho-
metrics in order to measure latent abilities in real-time.

This mixture of disciplines can also be formalized as iterative and
adaptive hierarchical algorithms embedded in a theoretical psycho-
metric framework. A similar hierarchical approach to multimodal
data was discussed in [19, 20]. In a computational psychometrics
framework, the test development process and data analysis are
rooted in test theory and start with the application of the principle

of Evidence Centered Design (ECD) [27]; then, the test is adminis-
tered as a pilot and the (multimodal) fine grain data are collected
along with the data from test items (e.g. multiple choice items). This
approach is sometimes called a top-down approach because it relies
on the expert-based theories. The next step involves a bottom-up
approach, in which the data are analyzed by data mining and ma-
chine learning algorithms. If new relevant patterns are discovered
in the data, these may be incorporated in the revised psychometric
models. Next, the psychometric models are revised and the process
is repeated with a second round of data collection. One may also ap-
ply stochastic processes to the process data. Once the psychometric
model is defined and the estimation of the model parameters is sta-
ble, the assessment is administered to the population of interest. On
the operational data, only supervised machine learning algorithms
and already defined and validated psychometric models are further
used in order to achieve a stable measurement and classification
rules.

This framework involves designing the system (learning and/or
assessment) based on theory, identifying constructs associated with
the competency of interest, and finding evidence for these con-
structs from the process data, including video or audio data [5]. The
need for an expansion of the psychometrics framework to include
data-driven methods occurred due to the characteristics of the data
(dependencies, fine grain size, and sheer volume).

The types of psychometrics models associated with complex data
with dependencies have primarily been Bayesian Belief Networks
(BBN) [25] [22]. BBNs model the probability that a student has mas-
tered a specific knowledge component, conditional on the sequence
of responses given to previous elements of a task and eventually
to other tasks, whether they are associated with that knowledge
component or not (as long as they are part of the network and share
at least an indirect connection. BBNs have been applied in games
to represent student knowledge and thereby guide the activities
of the tutoring system [9] [11] [44] [36]. BBNs seem attractive for
measuring CPS skills, but they have not been adapted to represent
the knowledge of multiple individuals simultaneously.

There are stochastic models (point processes, for example) that
can be used to model the temporal dynamics of the CPS tasks
[47], or hidden Markov models [39]; there are also models based
on the cognitive or social theories such as Agent-based modeling
[6] and Markov Decision Process, which is a cognitive model with
parameters that describe the goals or beliefs of the agents and which
defines behavior as an optimization of expected rewards based on
current beliefs about the world [21]. With the aid of data mining
techniques we may reduce the dimensionality of the dataset by
extracting interpretable patterns which allow research questions to
be addressed that would otherwise not be feasible [34]. This process
may help in the scoring process, by assigning different scores to
different clusters. Recent papers illustrate the identification of new
evidence to revise the psychometric models [50] [16] [17].

For the past decade, machine learning algorithms have been
used in education to automatically grade written essays; in order
to automatically grade and interpret the speech and chat in collab-
orative interactions we are using similar algorithms; similarly, we
can use machine learning for the automatic detection of emotions
or affective states during collaboration [19] [48].
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In specific practical applications of CP, this hierarchical inference
data model may be implemented in simplified or less explicit forms.

Figure 2: CPS Response Coding

2.3.1 Skill Evidence Tagging. For the "Circuit Runner" game,
ACT holistic framework researchers designed the tasks and the
potential conversation flows, so that theywould require participants
to collaborate with the virtual agent in a way that would provide
evidence of their latent skill ability associated with our selected CPS
sub-skills. Most of the dialog tree responses were tagged with one
or more sub-skills that were expert judged to provide skill evidence.
Furthermore, this evidence was also refined into a level tag using a
3 level enumeration of High, Med, and Low. In Figure 2 we illustrate
this tagging for one item/dialog tree prompt:

“I am in front of a computer monitor. I have access to
the teacher, a map of the maze, and something called
an ASCII lookup table. The teacher is talking to me."

and a selected dialog response of:
“What is the teacher saying?"

This participant event/action presents evidence of CPS skills:
• Monitoring Understanding (MU) at the Med (.2) level (MU.2)
• Engagement (EN) at a High (.3.x) level (EN.3.4)

These items are polytomous and can effectively be scored for a
participant based on their sub-skill association and level identifica-
tion.

2.3.2 Bayesian Evidence Tracing. We can see that conversation
flow between the participant and agent provides us with a continu-
ous stream of evidence of a participant’s CPS sub-skill, our research
question was:

“Given the real-time, sequential evidence presented
via the data of dialog response selections in this game,
can we intelligently predict the performance level at
each sub-skill?"

The methodology we chose to follow to answer this question
used a Bayesian approach related to those typically found in intelli-
gent tutoring systems, such as Bayesian Knowledge Tracing (BKT)
[9]. The steps to demonstrate this were as follows:
• Extract raw conversation flow game log from a set of played
games

• Transform the conversation flow into a flattened file that
combines prompt and response and filter out any potential
test data
• Generate a 1-Hot encoding of evidence (discussed below)
• Compute Bayesian predictions for all five sub-skills, across
each performance level
• Plot the evidence tracing for insight/analysis

Extract. The log data file extracted from the game is outlined in
Table 1. Each user can have 1 or more sessions and each session
can have 1 or more games. In practice though we are typically
only interested in 1 game for a single user. As we can see, the log
collects the presentation of a dialog tree prompt to the user in a
game as row type ’P’. The prompt presented is recorded in the
column ’prompt_id’. Row type ’R’ records the response selected by
the user in the game for the prompt row immediately preceding it
in the log. This raw game log file contained the game session log
for several game instances.

Transform. Our next step was to flatten this representation so
that the prompt and the response rows were combined into a single
record as shown in Table 2. Additionally, we also filtered out data
rows that were known to be developer gameplay ’user_ids’ so that
we were only looking at data from actual subject participants. There
were also prompt rows followed by some in game action. Instead
of a response to that prompt, the user had done something that
subsequently caused another prompt to appear. Since there was no
response to that initial prompt, it, along with the following action,
were also filtered out. Ultimately, N = 159 unique games for this
analysis.

1-Hot. Taking the flattened prompt/response data, we encoded
each game as a single row in a 159x286 matrix outlined in Table
3. The number of rows is the N count and the number of columns
are the three identifiers (session, user, game) plus the 283 potential,
selectable dialog responses (D=283). We encoded a ’1’ if the user
selected the identified response at any time during the game. It
should be noted that several of the dialog sub-trees can allow a
user to loop back through the tree within a single game. If the user
selected a particular response more than once in a game we still
recorded the selection with a single ’1’. Otherwise, if the user never
selected a particular response during the game the encoding for
that column is ’0’.

Compute. Before we introduce our computation of probabilities
for the performance levels of a game’s CPS sub-skills, let’s first
review Bayes’ theorem and how its application will allow us to
trace the evidence over time.

Bayes’ Theorem. One way to think of Bayes’ theorem [4] is that
it gives us a way to update the probability of a hypothesis, H, in
light of some body of evidence, E. This way of thinking about Bayes’
theorem is called the diachronic interpretation. More precisely, the
probability of the hypotheses changes over time as we see new
evidence. Rewriting Bayes’ theorem with H and E yields

p (H |E) =
p (E |H )p (H )

p (E)
(1)

In this interpretation, each term has a name:
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session_id user_id game_id time type prompt_id response ...
19 11 1 2015-09-28T15:29:39.302222 P 0.1
19 11 1 2015-09-28T15:29:49.627254 R 2
19 11 1 2015-09-28T15:29:49.627254 P 0.3
19 11 1 2015-09-28T15:29:50.906382 R 2
...

Table 1: Log file format

session_id user_id game_id time prompt_id response
19 11 1 ... 0.1 2
19 11 1 ... 0.3 2
...

Table 2: Log file flattened

session_id user_id game_id 0.1-1 0.1-2 0.3-1 0.3-2 ...
19 11 1 0 1 0 1
23 17 2 1 0 0 1
...

Table 3: 1-Hot Matrix

• p (H ) is the probability of the hypothesis before we see the
evidence, called the prior probability, or just "prior."
• p (H |E) is what we want to compute, the probability of the
hypothesis after we see the evidence, called the "posterior."
• p (E |H ) is the probability of the evidence under the hypothe-
sis, called the likelihood.
• p (E) is the probability of the evidence under any hypothesis,
called the normalizing constant.

As an example, let’s consider an application of Bayes’ Theorem
to a simple selection task using two bins to select from. On the
performance of this task, we will consider the evidence (E) from
a selection event and attempt to compute the probability of two
competing hypotheses (H1) and (H2). Hypothesis 1 will consider
that the selection event happened using bin 1 and hypothesis 2 will
consider that the event used bin 2. In Figure 3 we depict the two
bins, bin #1 and bin #2. Bin #1 contains 10 blue widgets (B) and
30 red widgets (R). Bin #2 contains 20 blue widgets (B) and 20 red
widgets (R). Let’s say that a selection event occurs and the evidence
is that of a red widget (R). We will now apply the Bayes’ theorem
to consider the probability associated with each hypothesis:

(1) H1: The red widget came from bin #1
(2) H2: The red widget came from bin #2
The prior for both p (H1) and p (H2) are the same, 12 , because we

are assuming that red and blue widgets appear equally in each bin.
The likelihoods are different though, as we can see based on the
composition of the bins. Specifically, we have

p (E |H1) =
3
4

(2)

p (E |H2) =
1
2

(3)

Figure 3: Bayesian Selection Example

Putting this all together we can compute the posterior for both
hypotheses as:

p (H1 |E) =
1
2 ∗

3
4

( 12 ∗
3
4 ) + ( 12 ∗

1
2 )
= 0.6 (4)

p (H2 |E) =
1
2 ∗

1
2

( 12 ∗
3
4 ) + ( 12 ∗

1
2 )
= 0.4 (5)

We can then state that given the evidence of a red widget we believe
there is a 60% chance this was associated with bin #1 and a 40%
chance this was associated with bin #2.

Response to Skill. Given this computation, we can apply it to the
evidence and hypotheses we have for the CPS game. In our selection
example, the evidence was straight-forward: was the widget blue
or red? In the CPS game we need a lookup table for our response to
determine which CPS sub-skill and at which performance level the
response selection evidence is associated with. In Table 4 we list
what our lookup table contains. The first column of the lookup table
combines a prompt identifier and the response, i.e. âĂŸ0.1-1âĂŹ
(the following row then containing âĂŸ0.1-2âĂŹ for the second
response of this prompt). The second column contains the noting of
skills and levels such as âĂŸEN.3.4:FI.2.2:MU.2âĂŹ, that has been
tagged by an ACT content expert providing evidence of:
• Engagement (EN) at a high level (3) (and specifically expla-
nation #4 in that high level)
• Finding Information (FI) at a med level (2) (and specifically
explanation #2 in that med level)
• Monitoring Understanding (MU) at a med level (2)
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response skills
0.1-1 EN.3.4:FI.2.2:MU.2
0.1-2 MU.2:EN.2.1
0.1-3 MU.1:EN.1.4
...

Table 4: Response to Skills Map

Figure 4: Conditional distribution of xs given θ

θ | Xi low med high
θlow 0.4 0.3 0.3
θmed 0.3 0.4 0.3
θhiдh 0.3 0.3 0.4

Table 5: Conditional Probability Table (CPT)

AsMislevy et al.[25] describe in their application of ECD to inter-
preting game log data, we can refer to these sub-skills as latent vari-
ables, studentmodel variables (SMVs) or competencies/proficiencies
and will denote them using θ , “[the authors] posit that students’
performances, characterized by features x j , arise from some un-
derlying dimensions of knowledge, skill, familiarity, preferences,
strategy availabilities, or whatever way we want to characterize
them for the purposes at hand. These are called latent variables in
the psychometric literature, and student model variables (SMVs),
or sometimes competencies or proficiencies, in ECD terminology.
We will denote them by θ "

Figure 4 presents a directed graph representation of a multivari-
ate model with parameters that specify conditional distributions
of x j (an instance of a selected CPS dialog response) given θ . The
β parameters can represent the “nature and strengths of the re-
lationship" between an x j and the associated latent variable θ . In
this way we can express the relationship between latent variables
in our model and the dialog selection evidence using conditional
probability tables (CPT) [25].

Conditional Probability Tables. In our Bayesian example, the
p (H |E), or likelihood, was a function of the composition of the
bins. In our application of Bayes’ rule to the game prediction we
will use a conditional probability table for our likelihood term in-
stead. An example of a CPT is shown in Table 5. This table was
built to provide a modest weighting that indicates a slightly higher
likelihood that users will pick responses aligned with their latent
variable. Using this table we can explicitly model the type of evi-
dence (high/medium/low performance level, designated by research
tagging) which is along the row and the hypothesized performance
level of the latent variable (low/medium/high) along the column.
Said another way, this table illustrates that if a participant’s latent
variable is low (row 1) then there is a slightly higher likelihood
(.4) that they will select a low tagged response option instead of a
medium/med or high level (.3). In practice, there could be a unique
CPT created for each item/conversation prompt instance. These
unique CPTs might be derived empirically through statistical anal-
ysis or could be built using expert judgement. This would allow
researchers to fine tune the likelihoods based on the particular item
content/difficulty.

Evidence Tracing. In our Bayesian widget selection example, we
presented two possible hypotheses: either the widget came from
bin 1 or 2. For the CPS game, we are presented with a response
that indicates sub-skill (ssi ) evidence at a particular performance
level. As we trace a student’s selections we are maintaining three
possible hypotheses about the participants latent variable per each
sub-skill, viz.

(1) Hypothesis: θhiдhssi , Given the evidence to date, the player
has a high level for this sub-skill

(2) Hypothesis: θmed
ssi , Given the evidence to date, the player

has a medium level for this sub-skill
(3) Hypothesis: θ lowssi , Given the evidence to date, the player has

a low level for this sub-skill

For each game (G=game_id) then, our algorithm for computing
probabilities for the performance levels of a particular sub-skill ssi
is presented in Figure 5

In the initialize step, we set the prior for all hypotheses about a
student’s sub-skill level at 1

3 , since we have no other evidence. For
each dialog response, if it was tagged for the sub-skill then we will
recompute the posterior for each hypothesis by incorporating the
new evidence. The β value used for the likelihood will be based on
a CPT lookup that considers which table is being used for which
dialog/response pairing and also what level the skill was tagged
with. In our initial applicationwe used the sameCPT for all evidence
(Table 5) but in our future work we intend to work with the dialog
content authors to fine tune the application of CPTs based on amore
refined judgement of distributions. We demonstrate the results of
our tracing in section 3.1.

2.4 Study Execution
We recruited a total of 159 middle school children to play the game.
This studywas carried out in accordance with the recommendations
of the Western Institutional Review Board with written informed
consent from all subjects. Parents provided consent for minors
and all subjects gave written informed consent in accordance with
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Figure 5: Bayesian Evidence Tracing Algorithm

the Helsinki Declaration. The game was accompanied with a re-
search survey containing personality and background questions.
The survey data included age, gender, grades, technology use, and
personality facets. On average, the participants spent around 30
minutes playing the game. We are currently performing a second
run of the study that recruits up to 1000 participants using Amazon
Mechanical Turk. In that run we are also including a few more
instruments in addition to the game play:
• a pre-survey and post-survey (demographics, background
questions)
• a collaborative problem solving questionnaire
• a situational iudgement task assessment involvingworkplace
behaviors relating to collaboration and problem-solving
• a HEXACO personality assessment. HEXACO is a six-factor
structure of personality-descriptive adjectives. [2]

2.5 Postgame Analysis
In the postgame analysis, we extracted the raw conversation flow
logs from the game and transformed the data to align with the
skill/level tagging data provided by the ACT holistic framework re-
searchers.We then used these data to address the following research
question:

“Given the raw data of selected dialog responses across
various games played, can we intelligently group pat-
terns of selections into clusters that may represent
different classifications of CPS skill evidence?"

Mislevy et al.[25] demonstrated how traditional assessment ap-
proaches relate to emerging techniques for synthesizing the ev-
idence we outlined in our research question. In particular they
demonstrate how the models/methods of psychometrics can be
leveraged in game-based assessments to collect evidence about
aspects of a game player’s activities and capabilities.

“Exploratory data analysis (particularly visualization
and hypothesis generation tools) and educational data
mining techniques (including recent methods such as
unsupervised neural network modeling and ... cluster
analysis, latent class analysis, and multidimensional
scaling) can identify associations among observable
features of performance that suggest new student-
model variables ... Educational data mining is the
process of extracting patterns from large data sets
to provide insights into instructional practices and
student learning. It can often be employed for exactly
the tasks of evidence identification: feature extraction
based on patterns in data ...

Bauckhage and colleagues also discussed the challenges stem-
ming from a similar research question with respect to clustering
game behavior data. [3]

“the proliferation of behavioral data poses the prob-
lem of how to derive insights therefrom. Behavioral
data sets can be large, time-dependent and high-dimensional.
Clustering offers a way to explore such data and to dis-
cover patterns that can reduce the overall complexity
of the data. Clustering and other techniques for player
profiling and play style analysis have, therefore, be-
come popular in the nascent field of game analytics.
However, the proper use of clustering techniques re-
quires expertise and an understanding of games is
essential to evaluate results"

Based on this and other related research [8, 18, 23, 30, 38], it
was evident that a machine learning-based, clustering methodology
would be useful to explore patterns within our game dialog selection
data. In particular we demonstrate an application of game-related, k-
means clustering (as reported in other related research [43]) versus
other types reported such as Linear Discriminant Analysis (LDA)
[12] or Mixture Model clustering [42].

2.5.1 Extract. The log data file that is extracted from the game is
outlined in Table 1. As we can see, the log collects the presentation
of a dialog tree prompt to the user in a game as row type ’P’. The
prompt presented is recorded in the column ’prompt_id’. Row type
’R’ records the response selected by the user in the game for the
prompt row immediately preceding it in the log. This raw game log
file contained the game session log for several game instances.

2.5.2 Transform. As we mentioned in our Bayesian workflow,
our next step was to flatten this representation so that the prompt
and the response rows were combined into a single record as shown
in Table 2. Additionally, we also filtered out data rows that were
known to be game developer ’user_ids’ so that wewere only looking
at data from actual subjects. There were also prompt rows followed
by some in game action. So instead of a response to that prompt, the
user had done something that subsequently caused another prompt
to appear. Since there was no response to that initial prompt, it,
along with the following action, were also filtered out. The N count
for this analysis was 159 unique games.

2.5.3 k-means Methodology. The methodology we followed in-
volved these steps:
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• Extract raw conversation flow game log from a set of played
games
• Transform the conversation flow into a flattened file that
combines prompts and responses, and filter out any potential
developer gameplay data
• Encode each game as a single row in a 1-Hot encoding of
selected dialog responses
• Translate the 1-Hot encoding into 5 datasets corresponding
to evidence acquired on all 5 CPS domains
• Perform basic scoring of each game on the 5 CPS domains
• Perform k-means clustering [40] of game domain scores
• Present summary and results of clustering

2.5.4 Encode/Translate. Taking the flattened prompt/response
data we encoded each game as a single row in a 159x286 matrix
outlined in Table 3. The number of rows is the N count and the
number of columns are the 3 identifiers (session, user, game) plus
the 283 potential, selectable dialog responses (D = 283). We encoded
a ’1’ if the user selected the identified response at any time during
the game. It should be noted that several of the dialog sub-trees can
allow a user to loop back through the tree within a single game. If
the user selected a particular response more than once in a game we
still recorded the selection with a single ’1’. Otherwise, if the user
never selected a particular response during the game the encoding
for that column was ’0’. Each of the unique dialog prompt/response
combinations were coded based on the 5 domains as defined in the
CPS game data section

Given this mapping, we were able to create 5 domain evidence
matrix variations on the 1-Hot matrix where we substituted the
1,0 with a value of 0,1,2,3 corresponding to the evidence values
(no/low/med/high evidence). See Figure 2.

2.5.5 Score. Given the 5 domain evidence matrices (as a vari-
ation from the 1-Hot encoding) we could then score a game on
each of the 5 domains by a simple summing of evidence across each
response feature.

scoreF I =
D∑
d=1

x F Id

scoreMU =

D∑
d=1

xMU
d

scoreEN =
D∑
d=1

xENd

scoreEV =
D∑
d=1

xEVd

scoreS =
D∑
d=1

xSd

We then reformed the scores into a domain score matrix 159x8
where the rows=N and the columns were the 3 identifiers (session,
user, game) plus the 5 summed evidence score for each domain as
show in Table 6.

2.5.6 Cluster. Using this derived score matrix we then per-
formed an unsupervised learning k-means clustering of the data
using the Graphlab-Create library2. We selected the K value based
on the following heuristic: K =

√
N /2.0 = 8 clusters

2.5.7 K Exploration. Starting with K=8 based on the heuristic
value, we continued to evaluate additional potential K value as-
signments. The k-means implementation of Graphlab-Create uses
the k-means++ algorithm for initial choice of cluster centers. This
results in some randomization and variance of cluster assignment
with each building of the model. As we visualized the data points
with the assignment of the K=8 clusters we noticed similar pat-
terns between several of the clusters. In particular, there appeared
to be overlap between 4 sets of 2. This indicated that a 4 cluster
assignment may be more appropriate.

We decided to build the model numerous times with a K value of
8 and compare cluster assignments between these model building
runs. We saw that row assignment from the initial cluster assign-
ment didn’t always result in classification to the same cluster as
on a subsequent build of the model. Sorting the data on the first
model build and looking at the cluster classification across the next
two builds of the model, we saw some of the same assignments.
We subsequently chose K = 6 and performed the same multiple run
build of the model. Drift was somewhat less, but not significantly
so. Setting K = 4 and building the model several times showed much
less variance in cluster assignment. There was still some drift, but it
was significantly less than what we saw with a K = 8 and in general
cluster assignments persisted across multiple builds of the model
even with randomly chosen initial centers.

2.5.8 K-NNQuery byGame Id. In addition to the k-meansmodel,
we also built a K-Nearest Neighbor (K-NN)model [1] usingGraphlab-
Create which allows us to go back and query the data for games
that were similar to a selected game id using a cosine similarity
distance metric.

2.5.9 Mixture Model Methodology. There are drawbacks to us-
ing the k-means clustering algorithm:
• assumes a specific shape of cluster distributions (spherically
symmetric)
• only provides hard assignments to one of the possible clus-
ters

k-means can be understood as a specific instance of a more
generic approach to clustering that is defined by analyzing a mix-
ture of distributions that can be computed using an Expectation
Maximization (EM) algorithm [24]. Following the same method-
ology we outlined above to derive our data frame of CPS dialog
scores, we re-ran clustering using a mixture of Gaussians approach.
This allows us to:
• learn the means and co-variances of each Gaussian distribu-
tion (asymmetric, elliptical cluster shapes)
• compute soft assignments to clusters using a Bayesian cal-
culation

In particular, the EM algorithm works by iteratively running an
E-step and M-step where:

2https://turi.com/products/create/
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session_id user_id game_id FI_Score MU_Score EN_Score EV_Score S_Score
46 33 211 47 10 26 3 7
57 38 310 39 21 31 4 9
...

Table 6: Scores Matrix

(1) E-step: estimates cluster responsibilities given current pa-
rameter estimates

r̂ik =
π̂kN (xi |µ̂k ,

∑̂
k )∑K

j=1 π̂N (xi |µ̂ j ,
∑̂
j )

(2) M-step: maximizes likelihood over parameters given current
responsibilities

π̂k , µ̂k ,
∑̂

k
|{r̂ik ,xi }

From a Bayesian perspective, the r̂ik probability represents the
responsibility that cluster k claims for observation i expressed as
a posterior distribution. This is computed based on π̂k , the prior
probability of cluster k , and the likelihood that observation i (based
on a Gaussian distribution) would be assigned to cluster k given
the mean and covariance of the distribution: N (xi |µ̂k ,

∑̂
k ) divided

by the normalizing constant which considers the probability over
all possible clusters

∑K
j=1 π̂N (xi |µ̂ j ,

∑̂
j ).

We implemented the code for both the E-step and M-step in
Python and ran the implementation over 120 iterations using the
MU, FI and EN scores. The S and EV domains were excluded based
on their low information content. We also implemented a matplotlib
function to plot the computed responsibilities after a specified num-
ber of iterations in order to show how the clustering evolved over
time. We present those plots in the clustering results section.

3 RESULTS
In the results section, we present visualizations of real-time Bayesian
evidence tracing based on a participant’s continuous log evidence.
We also present the results from our clustering data along with
views of cluster data indicators and distributions.

3.1 Bayesian Evidence Tracing Results
Our implementation of the Bayesian algorithm described in Figure
5 was done in Python using a Jupyter notebook3 web application.
We also used the SFrame API from Graphlab-Create to manipulate
the game log data4. In order to visualize the sub-skill probabilities
over time we initially used matplotlib5. An example of the plot
for a sample game_id=114 can be seen in Figure 6. This graph
shows the increases and decreases of the probability estimates for a
participant’s EN sub-skill over time. There are three lines because
we are tracking each level (high/medium/low) as a separate, but
3http://jupyter.org
4https://turi.com/products/create/
5http://matplotlib.org

Figure 6: Engagement (EN) Sub-Skill Level Probability over
Time for a Single Game

linked variable. All three variables begin using a prior set at .333
and then diverge as the evidence is traced using Bayesian analysis.
Additionally we used Tableau6 to render similar views as can be
seen in Figure 7. This view allows an analyst to see the predictions
of performance levels for each skill, over time, for a single game.
The blue area represents a high level, the white area is medium
level, and the orange area is the probability of a low level. This view
uses an area of fill representation.

Looking at the evidence collected for the single game_id=114
Figure 7, we can see the sub-skills for monitoring understanding
(MU) and feature identification (FI) quickly settled on a ’medium’
level assessment during the first third of the total dialog response
interactions. In contrast, the strategy (S) and evaluate (EV) sub-
skills settled on a ’low’ level assessment over the final two thirds
of the interactions. The engagement (EN) scores showed fairly
dramatic swings between all three performance levels over time,
ultimately finishing with a ’medium’ level assessment. If we were
restricted to only looking at the final probabilities (posterior values),
we wouldn’t have been able to notice these real-time patterns in
gameplay. Since the Bayesian Evidence Tracing algorithm is an
’anytime algorithm’, we are able to directly interrogate this model
at any point to determine the current estimate of a user’s sub-skill
probability.

3.2 Clustering Results
As we described in our methods section, we implemented two
clustering approaches, a hard clustering assignment with k-means
and a soft clustering assignment using a Gaussian mixture model
6http://www.tableau.com



KDD2017, August 2017, Halifax, Nova Scotia CANADA S. Polyak et al.

Figure 7: Probability (y-axis) over time (x-axis) for a single game (game id = 114) (Blue=High,White=Med,Orange=Low). En-
gagement (EN), Monitor Understanding (MU), Feature Identification (FI), Evaluation (EV), Strategy(S)

approach. Additionally, we implemented a K-nearest neighbor (K-
NN) mechanism to lookup related games based on the clustering
data.

3.2.1 k-means/K-NN Results. The clustering model using the
k-means approach yielded the game counts per cluster as shown
in Figure 8. We also report the sum of the squared distances of the
cluster members from their final centroid in Table 7.

3.2.2 Cluster Characteristics. Now that we have created a clus-
tering model of the game evidence scores, we can inspect the model
to see what each cluster might represent about the player/game
play evidence of CPS. To that end, we can look at the mean score
for each of the 5 domain areas for the members of each cluster.
The score scales of the 5 domains scores vary considerably, viz. the
’EV’ and ’S’ mean scores are much smaller. Table 8 is a view of the
max/min mean scores for the 5 domains across all of the clusters.

For visualization purposes, we normalized the mean scores as
follows:

Figure 8: CPS Data Cluster Counts
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cluster_id size sum_squared_distance
0 24 2995.88
1 24 736.42
2 11 978.73
3 25 2332.40
4 29 489.45
5 20 1085.40
6 8 673.50
7 18 1623.56
Table 7: CPS Data Cluster Counts

domain max mean score min mean score
FI 55.625 2.138
MU 36.545 2.379
EN 70.727 3.345
EV 5.273 0.793
S 6.545 0.069

Table 8: CPS Max/Min Mean Scores for the 5 Domains

Figure 9: CPS Data Cluster Domain Score Means

xnew =
x − xmin

xmax − xmin

In Figure 9 we present a graph of the normalized mean scores
for each domain across all 8 clusters. We roughly sorted the clus-
ters from left to right within each sub-skill column according to
relatively increasing score means.

Cluster 2 (N=11) represents the games that exhibit the highest
CPS scores across nearly all domains (except for FI), whereas cluster
4 (N=29) represents the games that exhibit the lowest CPS scores.
Given that we didn’t filter out incomplete games, i.e. games where
subjects did not make it all the way through the final challenge, it
is likely that cluster 4 represents many of these incomplete games.
Cluster 6 (N=8) game plays excelled at FI and presented very good
scores across the board as well. Cluster 3 (N=25) games provided a

Figure 10: Tableau Visualization of Scores By Cluster. Each
color/column is a cluster. A dot represents a game score in
CPS sub-skill {EN,FI,MU}. A black line shows a cluster mean
score.

balanced set of very good scores, especially in EN and EV. Cluster
5 (N=20) game plays excelled at EV and S. Cluster 1 game plays
(N=24) provided fairly weak evidence of CPS skills overall, whereas
clusters 7 (N=18) and 0 (N=24) presented low to average scores.

We also loaded the data into a Tableau workbook7 to analyze the
cluster characteristics using various worksheets. In that analysis,
we saw a vertical distribution of normalized scores grouped by score
feature (EN, FI, MU, S, EV) for each of the 8 clusters that showed
that while EN, FI and MU features appeared to have fairly tightly
grouped cluster values the features values from S, EV appeared to
be much more diffuse within a cluster. As EN, FI, and MU are the
important feature drivers of the cluster characteristics we looked at
a similar view. That allowed us to examine the cluster distributions
across a range of score groupings over EN, FI and MU. In Figure 10

7http://www.tableau.com
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name distance rank
46:33:211 0.0 1
207:181:1220 0.28 2
99:70:711 0.29 3
611:578:1981 0.32 4
441:418:1640 0.33 5

Table 9: K-NN query results for similar games

we re-arrange the data to illustrate the vertical cluster scores (the
black line indicates the mean) with each column as a cluster.

3.2.3 K-NNQuery byGame Id. In addition to the k-meansmodel,
we also built a K-Nearest Neighbor (K-NN)model [1] usingGraphlab-
Create, which allows us to go back and query the data for games
that were similar to the source game using a cosine similarity dis-
tance metric. A sample K-NN query results are shown in Table
9. The name column is simply a unique identifier based on the
concatenation of user, session and game ids.

3.2.4 Mixture Model Results. In Figure 11 we represent how our
application of an EM algorithm learned the dialog score cluster
responsibilities over a series of iterations. For 2-D visualization
purposes we just show the MU/FI features. The color of each dot
represents a blending of cluster probabilities.

As we can see the Mixture Model approach updates the cluster
distribution shapes over each iteration, effectively learning the
mean and covariance of each distribution. In Figure 12 we plot the
final shape of the cluster distributions (k = 4), again limiting this to
just the MU and FI score dimensions. As we can see, this method of
clustering allowed the model to learn asymmetric elliptical cluster
shapes and also provided us with probabilistic assignments of each
observation to any of the clusters. Thus we are able to represent
more robust cluster characterizations beyond a simple in/out hard
assignment.

Our interpretation of these data is that the observations in the up-
per right cluster represent players that were exhaustively exploring
the dialog trees which resulted in maximizing their dialog scores.
The next cluster to the left represents players who were focused on
getting just the data they needed in their collaboration to complete
the challenges. The two far left, bottom clusters represent players
that were not engaged and probably didn’t play through to the final
challenge.

4 DISCUSSION
In this paper we have demonstrated the application of computa-
tional psychometrics to gathering insights into a participant’s CPS
sub-skills using evidence gathered from an online simulation/game.
We showed how we can take the granular evidence gathered from
the conversation flow and simulation/game activity data and map
that onto our performance level estimates of latent variables, such as
CPS skills. These higher level constructs are driven by CPS subject
matter expert tagging and tunable conditional probability tables.
This methodology creates a model that can be inspected at any
time during the game to provide a probability-based estimate of
participant ability. As we move forward with this work we can use
this model to start to build more sophisticated simulation/game

Figure 11: EM Clustering Visualization
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Figure 12: EM Contour Plot

interactions that could change adaptively, based on our real-time
estimate of ability. For example, if we see participants are showing
evidence of low feature identification we can add cues/tips to help
them in this facet of interaction.

While the real-time Bayesian evidence tracing has proven useful
in generating actionable insights for an individual participant dur-
ing a game, our clustering work reported here has addressed our
need to also compare across games. Our application of k-means
gave us the ability to quickly characterize all games in the study and
to group similar gameplays with each other, thus yielding different
game profiles. Using K-NN we are able to treat these clusters as
queryable sets that allow us to find participants that had similar ev-
idence patterns of CPS sub-skills. In applying our Gaussian mixture
model we were able to generate a more flexible cluster characteri-
zation of each game that can allow for partial cluster membership
in more than 1 game profile.

We are working on the next iteration of our Circuit Runner game
using the methods and results we have reported here. In our fu-
ture work we are considering the integration of Bayesian evidence
tracing with an application of adaptive conversation flows. We are
also incorporating new instruments that will provide more demo-
graphics/data on the participants, such as a HEXACO assessment
of personality and the results of a CPS questionnaire. We are also
considering human-human CPS interaction scenarios that could
feature scripted or open-ended conversations.
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