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Abstract

The challenges in scaling cognitive modeling to
massive open online environments often involve
algorithmic tractability and knowledge represen-
tation for the complex subjects presented online.
To solve the computational tractability issue, we
present an optimized c++ implementation of stu-
dent models with parallelized Baum-welch fit-
ting method. To solve the knowledge represen-
tation issue, we describe a hierarchical cognitive
model based on courseware structure, and pro-
pose an extensive knowledge tracing model to in-
corporate students’ activities on the platform. We
evaluate the models on three online courses with
cross validation, and report the results in terms of
Root Mean Square Error (RMSE).

1. Introduction

The practice of inferring student knowledge and learning
in massive open online environments faces two major is-
sues of scale; algorithmic tractability and how to repre-
sent knowledge in the multitude of complex subject mat-
ter found online, particularly in college level offerings. In
this paper we introduce an open-source solution to the com-
putational tractability issue with an optimized c++ imple-
mentation of our model that includes parallelized Baum-
welch for parameter learning. We approach the knowledge
representation issue by deriving six different representa-
tions from courseware structure each at a different level
of conceptual granularity. We use cross-validation to em-
pirically evaluate which representation of knowledge best
explains students’ longitudinal question level performance
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in the course. Lastly, we apply an extension of the cog-
nitive model in order to incorporate the breadth of activ-
ities conducted by students on the platform and measure
the impact of those activates on knowledge gained in the
dimensions of the six modeled knowledge representations.
Our results from applying this technique to three Massive
Open Online Courses suggest that attribution of learning
to various courseware elements improves predictive per-
formance. Implications of this work include delivering in-
ferred resource pedagogical efficacy information to instruc-
tors and providing automatically generated resource point-
ers to learners.

2. Data set

We include three datasets consists of tracking log data re-
spectively from Maggie Sokolik’s BerkleyX course, “Prin-
ciples of English Writing, Part I’ (ColWri) offered on edX
in the Fall of 2013; Armando Fox, David Patterson, and
Sam Joseph’s BerkleyX course, “Engineering Software as
a Service” (CS) offered on edX in August of 2013; Ani
Adhikari and Philip B. Stark’s BerkleyX course, “Introduc-
tion to Statistics: Inference” (Stats) offered on edX in the
Spring of 2013.

The ColWri course is organized into five chapters, con-
sisted of 43,766 enrolled participants producing 7.6 million
events; the CS course is organized into nine chapters, con-
sisted of 8,978 enrolled participants producing 3.6 million
events; the Stats course is organized into five chapters, con-
sisted of 46,067 enrolled participants producing 18.6 mil-
lion events. Figure 1 shows the number of unique partici-
pants that logged at least a single action in each day of three
the course. The attrition was customarily steep but less so
than the 17 initial MITx and HarvarX courses (Ho et al.,
2014) which experience a 90% drop-off in the first week.
For example, of the 43 thousand enrolled in the ColWri
course, 4,600 ( 10%) received certification. There were 80
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assessment questions spread over 28 different problems. In
the edX platform, a problem typically consists of a figure
or passage of text and subsequent related questions.
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Figure 1. Number of participants over time

15000 R

Number of participant

Thirty five verb described each logged action in our event
table that was compiled to include the actor,verb,object for-
mat found in XAPI/TinCan (Initiative, 2013). The 35 verbs
and their frequencies are organized into groups of six verb
types in Figure 2.
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Figure 2. Frequency per action types per participant

3. Knowledge representation

An intuitive knowledge representation is to assume a uni-
fied knowledge component (KC) that generalizes the en-
tire course. Another simple representation can assume in-
dividual KCs underlining each individual conceptualized

knowledge units. Sophisticated knowledge representation
usually involve efforts from human experts in the domain
to develop. With the multitude of complex subject matter
found in massive open online environments, especially in
college level offerings, knowledge representation becomes
even harder. To approach this issue, we generate hierar-
chical KC models from the courseware structure each at a
different level of conceptual granularity.
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Figure 3. Generative structural cognitive models

The strategy is to start with a unified KC for the entire
course, and then refine it by traversing down the course-
ware structure. Figure 3 shows a tree-like courseware struc-
ture of the “Principles of English Writing, Part I’ course,
and annotates each level of concepts as different KC levels.
Thus the KC models, ranging from Course to Subpart,
categorize the minimal concepts defined at the leaves with
different level of granularity. A Course level model gives
the unified KC model. A Chapter level model assume the
subparts within the same chapter share the same level of
KC. In edX system, the chapters of a course are usually par-
titioned by week. So the Chapter level model include KCs
such as Weekl, Week2 and so on. The Category type level
summarizes the types of Category, and gives KCs such
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as Lecture, Homework, Quiz etc; while the Category level
shows which specific lecture or homework or others the
subparts belong to, and gives KCs such as Lecturel, 2,...,
Homeworkl, 2,..., etc. A Problem level model specifies
which problem in a lecture or homework or others the sub-
parts belong to, e.g. Lecturel Probleml, Lecturel Problem
2, ..., Homeworkl Problem 1, Homework2Probleml,..., etc.
At last, the Subpart level enumerates the minimal level
of concepts defined in a Problem, and gives KCs such
as Lecturel Problemli_1, Lecturel Probleml_2,..., Home-
worklProblem 1_1, Homework2Probleml _1,..., etc. We list
the KC models at different level of conceptual granularity
as follows, where # denotes the nonnegative numbering:

e Course: Course.

o Chapter: Overview, Week#.

Category type: Lecture, Homework, Quiz, Exam.

Category: Lecture#, Homework#, Quiz#, Exam#.

Problem: L#P# HW#-#, Quiz#-#, Exam#-#

Subpart: L#P#_#, HW#-#_#, Quiz#-#_#, Exam#-#_#

4. Computational model

We use Bayesian Knowledge Tracing (BKT) to model stu-
dents’ learning and discover students’ hidden knowledge
based on their responses to the subparts recorded in our
edX data. With no pre- and post-testing, BKT can help
us to identify when a student have already mastered the
knowledge component. And it also can help to predict a
student’s future performance given the student’s history of
practices. So, we first give a short review of the standard
BKT.

4.1. A review of the standard BKT

Bayesian Knowledge Tracing (BKT) (Corbett & Anderson,
1994) has been widely applied in intelligent tutor systems
and educational data mining. Figure 4 shows the graph of
standard BKT, where the unobserved nodes represent stu-
dents’ hidden knowledge and the observed nodes represent
students’ performance.

Figure 4. Standard Bayesian Knowledge Tracing (BKT)

More specifically, the binary hidden states denote the stu-
dent (knowing or not knowing) and the binary observed
states denote the student (correct or incorrect) perfor-
mance. BKT models the student’s learning rate as a tran-
sition probability from not knowing at the previous step to
knowing at the current step, the student’s guessing rate as
the emission probability from not knowing to correct per-
formance, and the student’s slipping rate as the emission
probability from knowing to incorrect performance at the
step.

Parameters are formally defined in the following formulas:

prior knowledge = Pr [z, = 1] (1)
learn = Pr [z441 = 1|z = 0] 2)

guess = Pry; = 1]z = 0] (3)

slip = Pr [y = Olzy = 1] )

Given the above parameters, students’ performance at time

t can be predicted by
Prly: = 1] = Pr[z; = 1] - —slip + Pr [x; = 0] - guess.

(&)

We assume an online inference, which updates the student’s
knowledge right after observing the student’s performance.
That is, when observing the student does correct at time t,
we update the knowledge at time ¢ as:

Prz; = 1[y; = 1]
Prxz: = 1] - —slip

= M 6
Pr(z; = 1] - =slip + Pr [z, = 0] - guess’ ©
and when observing incorrect at time t, we update:
Prz; = 1[y; = 0]
P =1]-sli
vy = 1 - slip o

" Priz = 1] - slip+ Pr[z; = 0] - ~guess’

At last, the knowledge at time ¢ 4 1 is inferred as:

Przi41 = 1] = Prlzy = 1|ly¢] + Pr [z, = 0|y,] - learn.

®)

Standard BKT can be simply represented as a Hidden
Markov Model (HMM), as shown in Figure 5(a). We add
a discrete state r;, which takes multiple values that enu-
merate the “resources’ defined from the data, as shown in
Figure 5(b). An early pilot of this model was discussed
in (Pardos et al., 2013). We add an edge between the re-
source state and the next knowledge state so that the transi-
tion probabilities between two knowledge states are now
depending on the last resource value. That is, the new
model reserves most of the parameters from the standard
BKT except learn, which is now fitted individually for each
individual resource:
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4.2. Add resource effect into BKT

Standard BKT can be simply represented as a Hidden
Markov Model (HMM), as shown in Figure 5(a). We add
a discrete state r;, which takes multiple values that enu-
merate the “resources” defined from the data, as shown in
Figure 5(b). We add an edge between the resource state and
the next knowledge state so that the transition probabilities
between two knowledge states are now depending on the
last resource value. That is, the new model reserves most of
the parameters from the standard BKT except learn, which
is now fitted individually for each individual resource:

learn, = Pr(zi11 = l|ay = 0,7 = 7] 9)

(a) HMM (Standard BKT)

(b) 1 prior resource-HMM

(c) 3 prior resource-HMM

Figure 5. Graphical representation of BKT models. x’s: bi-
nary hidden knowledge states; y’s: binary observed performance
states; r’s: multi-valued discrete observed resource states

Prediction and online inference are still the same as before,
but the knowledge at time ¢ + 1 is now inferred from which
resource was observed at time ¢:

Pr [Z‘t+1 = 1|Tt = 7”]
= Prz; = l|y] + Pr [zt = Olyy] - learn,.. (10)

So we create a new BKT model, discovering students’
hidden knowledge not only from their observed perfor-
mance but also what resources the students were using pre-
viously. In contrast to BKT models, related work (Lan
et al., 2014) uses an approximate Kalman filter approach to
jointly trace students’ hidden knowledge evolution and es-
timate the quality of the corresponding learning resources.

We could include all the resources that students have visited
after their last responses and before the current responses.
Alternatively, we only include the n “closest” resources
prior to the current response, which are considered to be
the most likely relevant resources to the current problem.
For example, Figure 5(c) shows a n = 3 prior resource
model. Each intermediate state between two observed re-
sponses get updated each time when a resource is observed.
The knowledge at time ¢ 4 1 can be recursively updated as:

Prizes1 = 1re = 13,141 = 1o, Te2 = 1] (11)
= Prlz; = 1ri—1 = ro] + Prlay = 0|ri—q = ro] - learn,,,
Prxzy = 1lri_1 = 7,149 = 1] (12)
=Prxi_1 = 1lri—g = rq]

+Przi_1 =0lri_o = 71] - learn,,,

Prizi_1 = 1|ri_s =m] (13)
=Przi_o = 1l|yi—o] + Przi—o = Olys—2o] - learn,.,.

Next, we introduce how to scale these BKT models to
MOOC data. We first describe the current HMM fitting
algorithms and their scalabilities, and then present our opti-
mized C++ implementation with parallelization, which we
call xBKT'. Related work (Gonzélez-Brenes et al., 2014)
provides an alternative optimized Java implementation of
BKT models, but with no parallelizations.

4.3. Scale BKT models to MOOC (xBKT)

4.3.1. HMM FITTING ALGORITHMS AND
SCALABILITY

Almost all standard HMM fitting algorithms alternate be-
tween two steps: (1) dynamic programming over data se-
quences and (2) model updates. For example, in the con-
text of the ubiquitous Expectation-Maximization (EM) al-
gorithm for finding local optima of the data log likelihood,
(1) is the E step and (2) is the M step (Rabiner, 1989;
Bishop, 2006). These same two steps are present in meth-
ods motivated from both Frequentist and Bayesian frame-
works, including Viterbi EM, (stochastic) gradient descent
on log likelihood, Gibbs sampling (Johnson & Willsky,
2013), variational mean field (Beal, 2003), and stochastic
variational methods (Hoffman et al., 2013). In all of these

"https://github.com/CAHLR/XxBKT
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cases, alternating fitting procedures arise because of the
HMM model structure: given some estimate of the model,
the Markov structure on the state sequence enables effi-
cient dynamic programming inference over sequential data.
The same alternating algorithm design, and hence the same
scaling ideas, apply also to hierarchical models built using
HMMs.

Here, we focus on the standard EM algorithm for model fit-
ting and use it to highlight basic scaling issues for all such
models. In this section we use only the time-homogeneous
HMM to simplify notation, but the same ideas readily gen-
eralize to our models in which there may be multiple obser-
vations per time step and transitions depend on resources.

A basic HMM with N hidden states over a data sequence
y1.7 and a state sequence x1.7 iS parameterized by the

triple (A, B, w) where
Aij =Prlzg = jlz, =1 (14)
Bij :=Pry; = jlay = 1] (15)
m; = Prx; =] (16)
forallt=1,2,...,Tand¢,j =1,2,..., N. Inthe E step,

we compute the expected statistics for the distributions pa-
rameterized by (A, B, 7) conditioning on the data y.7; for
example, the expected statistics for the transition matrix A
are

T-1

> [z =i 2041 = j]] (17)

t=1

:ZPr [21 =i, 241 = jly1.7]
t

Ocivj ZPr[yllta Ty = Z] Pr[$t+1 = ]|xt = Z}
b e e

Pr[yH»lzT‘xtJrl = J]

CXBH~1 (j)B'iyz+1

where the expectation is over p(x1.r|y1.7) and where «
and [ are the forward and backward messages, respec-
tively, which can be computed efficiently in O(T'N?) time
and O(TN) space each via recursion, e.g.

Z () AijBiye.s - (18)

The computation for the other statistics is analogous, and
the M step simply renormalizes these statistics.

Oét+1

Therefore the algorithm consists of iterating a forward and
backward pass over each data sequence to collect statis-
tics with aggregation and normalization of those statistics.
Since the passes over each sequence are independent of one
another, and since both the model parameters and the col-
lected statistics are relatively small, it is natural to run the

E step in parallel for many sequences and aggregate the
results via reduction. This parallelization strategy works
well for both multicore (shared memory) machines as well
as cluster and cloud computing settings.

Given a model fit, we can evaluate the fit’s prediction accu-
racy by calculating one-step-ahead predictions on test data
using the forward message recursion:

N .
Prlye 1]y Z Z 7141‘3‘33‘.% - (19
i=1 j=1 Zk 1 at( ) o

4.3.2. C++ IMPLEMENTATION

To enable scaling to large data while keeping model fits
and human loops tight, we need a parallel implementa-
tion that can scale across cores and nodes as well as high-
performance serial code to be run on each core.

For serial performance, we sued C++ and the Eigen tem-
plate library (Guennebaud et al., 2010) for fast matrix oper-
ations. Eigen provides lazy expression templates and gen-
erates highly compiler-optimizable code; it also provides
explicit vectorization (SSE2/3/4 and SIMD instructions)
for extremely high performance. Critically, our implemen-
tation also optimizes memory and cache access, particu-
larly by using the alpha-gamma recursion (a variant on the
alpha-beta recursion) that eliminates extra data accesses on
the second pass of the E step. We also use normalized mes-
sages instead of log messages, since divisions use fewer cy-
cles and processor dispatch slots (Intel Corporation, 2013).

For multicore scaling, we use OpenMP (see Appendix) for
lightweight threads that share a virtual address space and
thus avoid costly interprocess communication. Since each
of our data sequences is short, to avoid false sharing in
the cache and other parallel memory allocation issues, we
allocate packet-aligned temporaries on each thread’s stack
and thus avoid any dynamic memory allocation during the
message passing step. Finally, with OpenMP 4.0 in the
unreleased GCC 4.9, user-defined reductions provide effi-
cient aggregation of statistics across threads, even as mod-
els grow and require more data to be communicated.

To handle truly massive datasets, we are experimenting
with both cluster and EC2 computing using [Python par-
allel (Bernard, 2013) and Julia (Bezanson et al., 2012). In
particular, Julia is designed for easy and flexible scaling
(on both private clusters and EC2) and provides an easy in-
terface to our low-level code. Julia itself is very efficient
due to its JIT-compiled design using the LLVM compiler
infrastructure.
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4.3.3. PERFORMANCE IMPROVEMENTS

We test the performance of this multicore parallelized and
optimized C++ implementation on our x86_64 linux server
with memory of 819 gigabytes, and 4 Intel ® Xeon ®
Processors each has 12 cores. We compare our C++ im-
plementation with Murphy’s BNT Matlab EM algorithm
implementation (Murphy, 2001) that is the most widely
used toolkit for BKT models in the community of edu-
cational data mining and intelligent tutor system (Chang
et al.,, 2006; Xu & Mostow, 2011). We train the stan-
dard BKT model at KC level of Subpart by the full dataset
of “Introduction of Statistics: Inference”, which includes
1,675,985 submitted subparts from 46,067 enrolled partic-
1pants.

With only one initialization and maximum iteration num-
ber of 100 for the EM algorithm, the un-parallelized sin-
gle core xBKT takes 6.4463 seconds to converge at toler-
ance value of le — 3. The parallelized multicore xBKT
only needs 3.1007 seconds. The BNT toolkit takes up to
20 hours (72,690.5819 seconds) to converge with the same
EM criteria. Thus, our multicore and optimized C++ im-
plementation is about 10,000X faster than the BNT Matlab
implementation.

In addition, Figure 6 plots the elapsed time vs. the maxi-
mum number of threads that can be used for the parallel re-
gion in OpenMP. For our 4 processors server with 12 cores
per processor, xBKT reaches its best performance (elapsed
time of 3.1007 seconds) when the maximum number of
threads is set to be 12. The elapsed time for single thread
in the multicore setting is 6.5398 seconds, slightly longer
than the single core setting (6.4463 seconds). It increases
to 3.3492 seconds for maximum of 24 threads. The elapsed
time changes nonlinearly due to the system overhead.

551

Elapsed time (seconds)
o

L
8 12 16 20 24
Maximum number of OpenMP threads

Figure 6. Multi-core xBKT performance measurements on Stats
course (4 processors each has 12 cores)

5. Experiment

We use xBKT to fit different BKT models (with and with-
out resources at different KC level) on three of our datasets,
ColWri for the “Principles of Written English, Part I”,
CS for “Engineering Software as a Service” and Stats for
“Introduction to Statistics: Inference”. We predict the re-
sponses of the subparts submitted by unseen students with
5-fold cross validation, and then compare the results with
respect to Root Mean Square Error (RMSE).

5.1. Methodology
5.1.1. DATA PRE-PROCESSING

In our data, students’ responses were recorded every time
when the action of ”problem check” happens. Students can
check in their answers to a problem multiple times. Each
submission can be an empty answer, a complete answer
of the entire problem, or a partial answer to one or more
subparts in the problem. We ignore all the empty answers
that were evaluated as incorrect. We also ignore all the
incorrect responses that have the same answers submitted
before. We get rid of all the consequent checks from a stu-
dent after the student’s first correct response, so that a cor-
rect can only happen at the end of a student’s sequential at-
tempts on a subpart. At last, we filter out the resources that
was recorded less than 5 seconds ahead a student’s submis-
sion in order to exclude those unconvincing resource data
points.

After pre-processing the three datasets, we obtain
7,816,175 records (including 486,403 submitted subparts)
for ColWri course, 3,562,083 records (including 188,429
submitted subparts) for CS course, and 18,693,393 records
(including 1,675,985 submitted subparts) for Stats course.

5.1.2. CROSS VALIDATION

For each of the datasets, we apply a 5-fold cross valida-
tion by randomly partitioning the students into 5 equal size
folds. Each time we train the models on approximately
80% of the students, and then validate on the other 20%
unseen students.

5.1.3. BASELINE

For each KC model we defined in Section 3, the baseline
is calculating the percentage of correct responses for each
specific KC in the training set, and use it to predict the
probability of correctly answering a subpart requiring the
corresponding KC in the test set.

5.1.4. MODEL CONFIGURATION

We fit learn rates per KC specified with or without resource
specified, and guess, slip rates per subpart. Based on the
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different KC levels discussed in Section 3 and the different
types of recourses that are taken into account, we need to
characterize 4 properties for our BKT models.

First, we need to specify the KC models that are defined
from the hierarchical courseware structure. There are 6
different KC levels, starting from Course level and down
to Subpart level. Second, we need to decide at most how
many prior resources should be traced back given a sub-
mitted response. Here we consider 5, 3, and 1 single prior
resource(s). Note that 0 prior resource represents the stan-
dard BKT. Third, we need to specify the resource granu-
larity, such as shall we include any of the resources that is
a video, or only the videos that are for Lecture 2?7 In our
data, there are three columns that can be used to represent
the resource granularity: taking video as an example, object
describes which video for which lecture should be consid-
ered; action describes from a another perspective, such as
if this video resource is playing or paused; and action type
describes the types of the resource, such as if this is a video
or a problem. Last, we need to define the scope of the re-
sources, such as a resource should be enclosed if it’s in the
same problem or the same chapter as the submitted subpart
belongs to. We list the 4 properties and their specific values
as below:

e KC model

— Subpart, Problem, Category,
Chapter, and Course

Category type,

e Number of prior resources:

— 5, 3, and 1 (O for the standard BKT)

e Resource granularity

— object (thread#, L#P#, L#V#, etc.)

— action (forum_endorse, forum_view,

lem_view, video _play, video_pause, etc.)

prob-

— action type (forum, page, problem, sequential,
video, and wiki)

e Resource scope

— problem, chapter, category, and course

Thus one BKT model configuration can be “Subpart KC
model, 5 prior resources, action type as resource, with re-
sources in the same problem”. After enumerating all the
combinations, we result at 6 X 3 x 3 x 4 = 216 models.
Besides, we have 6 standard BKT models (equally as “0
prior resources”) and 6 baseline models based on the 6 dif-
ferent KC levels.

5.2. Result
5.2.1. MODEL FIT WITH CROSS VALIDATION

For each dataset, Table 1 aggregates the RMSE per number
of prior resources, across all the models with different KC
levels, Resource granularity and Resource scope. Adding
resource effect into BKT models significantly improves the
prediction comparing to the standard models, but the num-
ber of prior resources doesn’t differentiate the performance
very much. Table 2 aggregates the RMSE for each Re-
source granularity, across all the models with different KC
levels, Number of prior resources and Resource scope. The
action resource model consistently outperforms the object
and action type models, as well as the standard BKT, for all
of the three datasets.

Table 1. Aggregate RMSE per Number of prior resources

Course

ColWri CS Stats
5 0.3149 0.2156 0.2395
Number of 3 0.3149 0.2155 0.2395
prior resources: 1 0.3148 0.2153 0.2394
0 (BKT) | 03159 0.2156 0.2397

Table 2. Aggregate RMSE per Resource granularity
Course
ColWri CS Stats

Object 0.3149 0.2158 0.2397

Resource Action 0.3145 0.2151 0.2393

granularity:  Action type | 0.3152  0.2155 0.2395

Null (BKT) | 03159 0.2156 0.2397

Now we set the Number of prior resource to be 1 and the
Resource granularity to be action, and show the RMSE
score per Resource scope per KC level in Table 3. The
italicized numbers represent the best RMSE for each KC
model, while the bold numbers represent the best RMSE
for each Resource scope. First of all, all the BKT models
beat our baseline for all the three datasets. Secondly, all
the resource based BKT models perform no worse than the
no resource (standard) BKT models. Moreover, from all of
the three datasets, the best KC model is at Problem level
(except Subpart for baseline), and the best Resource scope
is to include resources from the same Problem.

5.2.2. LEARNING PARAMETER

In addition to model fit, it is also interesting to see how the
fitted parameters help to understand the student activities
on the platform and measure the impact of those activities
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on knowledge gained. We set KC at chapter level, use ac-
tion as the resource, include all the resources in the course,
and trace back 5 prior resources. We fit this model to all the
three full datasets and get a list of learning rates per action
per chapter. We select the top 10 resources with the highest
learning rates for each week, and categorize them by video,
webpage, Discussion, Homework/Quiz, and Progress. Fig-
ure 7 shows the resource list for each of the three course.

We aggregate the resource specific learning rates per ac-
tion type, and plot radar graphs for three of the datasets in
Figure 8(a, b and c¢). Resources as Video, Discussion and
Wiki have the most impact on course ColWri; resources as
Discussion, Wiki and Problem views have the most impact
on course CS; and resources as Wiki and Discussion have
the most impact on course Stats.

6. Conclusion

We present an open sourced tool (xBKT), which uses mul-
ticore computing and optimized c++ implementation, to
solve the computational tractability issue of scaling stu-
dent models to massive open online environments. We
simplify the knowledge representations of online courses
by automatically generating KC models from courseware
structures at different level of conceptual granularity. We
propose an extension of the Bayesian Knowledge Tracing
by incorporating the students’ activities on the platform
and measure the impact of those activities on knowledge
gained.

Our BKT models that included knowledge state trasition
probabilities for each resource significantly improved pre-
dictive performance over a model that only looked at as-
sessment information in all three datasets. This finding is
of pedagogical significance as it may be indicative of es-
timated pedagogical efficacy of resources that generalizes
to new students. Implications of this includes the abil-
ity to give model based feedback to instructors on the ef-
ficacy of various components of their course. Addition-
ally, resources with high knowledge state transitions could
be linked to as hints in the context of particular prob-
lems. With the contribution of this framework for measur-
ing knowledge acquisition and performance enhancements,
new frontiers in knowledge discovery in massive open on-
line environments may be explored.
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Table 3. RMSE per Resource scope per KC (Number of prior resources = /, and Resource granularity = action)

(a) ColWri course

KC Model
Subpart Problem Category Category type Chapter Course
Problem 0.3289 0.3031 0.3071 0.3133 0.3135 0.3171
Category 0.3301  0.3046 0.3074 0.3138 0.3139  0.3169
Chapter 0.3294  0.3044 0.3077 0.3136 0.3136  0.3169
Resource scope:
Course 0.3294  0.3047 0.3073 0.3136 0.3135 0.3169
No resources (BKT) | 0.3348  0.3064 0.3085 0.3140 0.3142 0.3172
Baseline 0.3367 0.3548 0.3556 0.3620 0.3662  0.3722
(b) CS course
KC Model
Subpart Problem Category Category type Chapter Course
Problem 0.2169  0.2090 0.2132 0.2143 0.2158 0.2176
Category 0.2183  0.2108 0.2133 0.2140 0.2162  0.2176
Chapter 0.2170  0.2110 0.2134 0.2141 0.2159 0.2175
Resource scope:
Course 0.2170  0.2110 0.2136 0.2141 0.2160 0.2175
No resources (BKT) | 0.2247  0.2122 0.2150 0.2156 0.2164 0.2176
Baseline 0.2287  0.2421 0.2486 0.2500 0.2517  0.2545
(c) Stats course
KC Model
Subpart Problem Category Category type Chapter Course
Problem 0.2491  0.2231 0.2362 0.2364 0.2432  0.2455
Category 0.2497  0.2236 0.2366 0.2365 0.2432  0.2455
Chapter 0.2498  0.2237 0.2366 0.2368 0.2432  0.2455
Resource scope:
Course 0.2499  0.2237 0.2366 0.2369 0.2432  0.2455
No resources (BKT) | 0.2516  0.2249 0.2366 0.2366 0.2432  0.2455
Baseline 0.2577  0.2790 0.2851 0.2851 0.2892  0.2908
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