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ABSTRACT

The purpose of cognitive diagnostic modeling is to classify
students’ latent attribute profiles from the designed assess-
ments. When analyzing a particular assessment dataset, in-
appropriate diagnostic classification model and inaccurate
Q-matrix impact the classification accuracy. In contrast
to existing research which added new parameters or rebuilt
statistic models, the classification rate of DINA and DINO
models were not accurate enough in experimental compar-
isons. In this paper the misclassification results using DINA
and DINO models were viewed as incomplete labels for ex-
aminees. A semi-supervised learning framework combin-
ing Co-Training module and Deep Feedforward Networks
(DFN) module is proposed to achieve a robust classification
result using these incompletely classification results. Both
simulated study and real assessment data based study were
conducted to compare the performance between the pro-
posed method and 5 widely used DCMs. The experimental
results showed that the proposed method obtained accurate
and robust classification rates across different test conditions
and was more robust to the Q-matrix misspecification.

1. INTRODUCTION

The purpose of cognitive diagnostic modeling (CDM) or di-
agnostic measurement is to provide students’ skill/attributes
mastery status (mastery or non-mastery) through their re-
sponses to items from carefully designed assessments. Be-
cause of the ability to provide educators diagnostic feedback
from students assessment results, CDM have been the focus
of much research in the last decade. Various types of diag-
nostic classification models (DCMs), such as the determin-
istic inputs, noisy and gate (DINA) [13], the reparametrized
unified model/fusion model (RUM) [10], and the log-linear
cognitive diagnosis model (LCDM) [12], are designed based
on different cognitive theories or hypotheses about how at-
tributes behave, or interact, to produce individual item.

When analyzing a particular assessment dataset, selecting
inappropriate DCMs (model misspecification) impacts the
classification accuracy and parameter estimation. For ex-
ample, when the attributes measured by an assessment are
non-compensatory, which indicates that non-mastery on one
attribute cannot be compensated by mastery on another at-
tribute, selecting a compensatory model will decrease the
performance of classification and measurement. In the most
recent research, a common method of selecting appropriate

DCM is to apply various potential DCMs to the data and
compare their performance using some statistic model evalu-
ation criteria, such AIC and BIC. Whereas the conclusion of
such comparison might differ when using different criteria.
For example, when analyzing Michigan English Language
Assessment Battery (MELAB) reading test dataset [15], the
full generalized deterministic input noisy and gate model
(G-DINA) [7], was found a better fit in terms of its Akaike
information criterion (AIC), whereas the additive CDM (A-
CDM) [7], one of the main effects models, was superior in
terms of the Bayesian information criterion (BIC). Mean-
while, the restriction of models also affects the performance
of applying DCMs. In one recent comparison among DCMs
to analyze TIMSS 2007 fourth grade mathematic assess-
ment, DINA [13] and DINO [21] models achieved worse fit
than did the other more relaxed DCMs, such as G-DINA,
LCDM and R-RUM because both DINA and DINO might
be too restrictive to reflect actual students’ knowledge sta-
tus [23].

Although more general DCMs provide more accurate clas-
sification results through adding more parameters to the
statistic model, the performance is sensitive to the assess-
ment conditions and priori information such as attributes
architecture and accuracy of Q-matrices. A Q-matrix indi-
cates the relationship between items and attributes in an as-
sessment. Q-matrices are often carefully designed by assess-
ment experts, whereas some existing research and their ex-
perimental results have shown that Q-matrices constructed
by content experts do not always reflect the relationship pre-
cisely and may require empirically-driven modifications [2;
22]. Furthermore, the Q-matrices for most large-scale as-
sessment are not always known completely and must be es-
timated to establish the associations between items and at-
tributes. The existing research showed that, generally, the
DINA, attribute hierarchy model (AHM), and rule space
model (RSM) were mostly used with math; the R-RUM and
general models (e.g. G-DINA, LCDM) were mostly used
with reading [20], however, selecting an appropriate DCM
or design new statistic models to reduce misclassification for
a particular assessment still took lots of research effects.
To find the best way to convert student’s response pat-
tern to a diagnostic classification, Artificial Neural Networks
(ANNSs) have been proposed as an attractive approach [5; 6],
according to the increasing of data size and development of
computational power. In the existing research, both ANNs
for supervised learning (e.g. multi-layer perceptron, MLP)
and unsupervised learning (e.g. self-organizing map, SOM)
were used to classify students into different latent groups.



For supervised learning ANNSs, the challenge is that true la-
tent class labels for students are not available to train the
parameters of ANNs. To overcome this problem, a proce-
dure [5] was conducted to synthesize the fake ideal item
responses using ideal attribute patterns and hypothesized
DINA model (both slipping and guessing were equal to 0)
and used such synthesized responses to train MLP. Their
simulated study showed that the classification accuracy of
MLP is not as good as DINA because the training process
could not find the best optimization for ANN using such
insufficient training data. For unsupervised learning ANNs,
because the computation process of ANN is viewed as “black
box”, the outputs of ANNs may cause class switching and
unexplainable results. The experimental results [5] showed
that the performance in classification is not as good as MLP.
In addition, all current ANN methods were only applied to
simulated data based on DINA model and only focused on
supervised learning and unsupervised learning.

In contrast to existing methods which tried to find the best
way for diagnostic classification by adding new parameters,
rebuilding statistic models or simply using ANNs, the mis-
classification obtained by an inappropriate DCM is viewed
as noisy or incomplete labels for examinees in this paper.
According to this novel point of view, a semi-supervised
learning is introduced to make use of such incomplete la-
bel obtained by inappropriate DCMs for training. In ma-
chine learning field, semi-supervised learning [24] falls be-
tween supervised learning (with completely labelled train-
ing data; e.g. regression, classification) and unsupervised
learning (without any labelled training data; e.g. clustering,
dimensional reduction). To handle the incomplete labels,
Bootstrapping (“self-training”) [9] built an initial classifier
using the correctly labelled examples, and then iteratively
classified unlabeled /mislabeled examples, updating the rules
for the classifier using the expanded training data, and re-
peating these steps until convergence; Co-Training [18] uses
a pair of classifiers with separate views of the data to iter-
atively learn and generate additional training labels. More
recently, the techniques to solve the training using noisy la-
bels using artificial neural networks have begun to receive at-
tention, such as Restricted Boltzmann Machine (RBM) [14]
and Generative Stochastic Networks [1]; also developed the
deep neural network with robust loss function was also de-
veloped [16] to handle label-omission and registration error.
In this paper, to find a better way to convert response
pattern to latent attribute profiles under different assess-
ment conditions, a semi-supervised learning method com-
bined a Co-Training module and a Deep Feedforward Net-
work (DFN) module was developed to refine the classifica-
tion accuracy using inappropriate DCMs. In the following
sections, the structure of this framework is firstly described.
In addition, the experimental results to compare the pro-
posed method and 5 widely used DCMs under both simu-
lated and real assessment-based experiments are illustrated.
Lastly, the benefits and challenges of this methodology are
summarized, and the future research is also outlined.

2. PROPOSED FRAMEWORK

The proposed framework in this paper consisted of two mod-
ules: Co-Training module and DFN module. The Co-Training
module used a pair of DCMs with separate hypothesis of
the attributes measured in an assessment to learn and gen-

erate the incomplete training labels. The DFN module was
to conduct a semi-supervised learning procedure using re-
sponse patterns to convert an observed response pattern to
a latent attribute profile. Figure 1 shows the structure of the
proposed framework. In this section, detailed description of
these two modules is introduced.

2.1 Co-Training Module

Typical Co-Training algorithm is a semi-supervised learning
requires two views of the data. It assumes that each observa-
tion can be represented using two different types of descrip-
tions that with various and compensatory information about
the instance. In this paper, we designed the Co-Training
module according to the idea of typically Co-Training algo-
rithm. To make the hypotheses of the attributes from two
classifiers separated and compensatory, DINA and DINO
models were selected because the attribute information con-
tained by DINA and DINO models were compensatory.
DINA model is a non-compensatory or conjunctive DCM
means that lack of one attribute cannot be compensated
by the mastery of another attribute measured by an item.
The DINA model classifies students into two groups for each
item, those who have mastered all the attributes required
by an item and those who have not. The jth item response
probability of the ith student can be written as:

i (1=&ij)
Pyij = 11&;j,55,95) = (1 —s55)%g; 9 (1)

where §;; = 1 indicates the student has mastered all required
attributes and &; = 0 refers to no-mastery status, s; and
g; are the slipping parameter and guessing parameter of the
jth item.

In contrast to DINA model, DINO model is a compensatory
or disjunctive DCM which means that a non-mastery on one
latent attribute can be compensated for by a mastery status
on another attribute. The jth item response probability of
the ith student can be written as:

g (1—w;s)
P(yij = lwij, s5,9;) = (1 —s5)%9g; (2)

where the latent response w;; = 0 indicates mastery of at
least one measured attribute and w;; = 1 indicates absence
of all required attributes, like DINA, s; and g; are the slip-
ping parameter and guessing parameter of the jth item.

In addition to the information compensation between DINA
and DINO, the second reason of choosing these two DCMs
as classifiers of Co-Training module was that both DINA
and DINO are two earliest DCMs and have been widely
used as baselines when introducing a new DCM. Due to the
constraints of DINA and DINO, the classification processes
can converge easily under different assessment data and the
outputs are valid in contrast to relaxed DCMs. However,
the classification rates of DINA and DINO models are not
as good as the general DCMs in most research papers.

In the Co-Training module, once both DINA and DINO
model were fitted according to responses and Q-matrix, the
probability of ith student with response pattern X; belongs
to latent class ¢; under DINA and~ later}t class co under
DINO models were denoted as P({YJCI,YI?QHXZ-), c1 and
co could be either same or different.

2.2 Deep Feedforward Network Module
Since the classification results from DINA ¥;!, and DINO

sC1

f’fCQ were incomplete if they were inappropriate models for
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Figure 1: The diagram shows the structure of our semi-supervised learning process by combining Deep Feedforward Network
module and Co-Training module. Although in our experiment, we will use DINA and DINO models, any combination of two

DCMs is available for this network structure.

assessment data, these two classifications were assumed to
be conditional distribution of the true latent class of the ith
student T;.. Suppose P(T;.|X;) refers to the probability
that ith student with response pattern X; belongs to the
true latent class T, {Y;',,Yi%,} and X; are conditional
independent when giving T; ., and the classification results
of DINA and DINO can be represented as following;:

P({ﬁ%anﬁ?czHXi) = P({ﬁ%cl7171?52}|T1,C)P(T170|X1) (3)

However, in equation 3, the two conditional distributions
P({Y.,, Y2, }Tic) and P(T;.|X;) are not easy to be di-
rectly represented using statistical representations before
doing data analysis. Instead, we conducted a Deep Feed-
forward Network (DFN) module to approximate these two
distributions. Deep feedforward networks [8], also called
feedforward neural networks, or MLPs, are the quintessen-
tial deep learning models. The goal of a feedforward net-
work is to approximate some functions { because the uni-
versal approximation theory [4] states that every continuous
function that maps intervals of real numbers to some out-
put interval of real numbers can be approximated arbitrarily
closely by a deep feedforward networks with just one hidden
layer. Using the DFN, these two conditional distributions
P({Y}.,, Y., }|Ti.c) and P(Ti.c|X;) can be approximated as
following;:

P({S}z%m ) 5};?02}|Tiac) ~ P({ﬁ?cp}}i?czﬂfi,c) = ‘II(TZ C) (4)

s

P(Ty.c|Xi) ~ P(T;.c|X;) = ®(X;) (5)

As shown in Figure 1, ®(-) took a student’s response pattern
X; as input (input layer) and used 2 hidden layers (hidden
layer 1 & 2) to compute the nodes values of true label layer
(true latent class of examinees). In the framework, the aim
of adding multiple hidden layers was to learn more abstrac-
tive information from the students’ responses. ¥(-) took the
estimated values of true label layer Ti,c as inputs and com-
puted the classification 1 (f/llcl) and classification 2 (171262) as
the outputs. Thus, P({ﬁ}cl,ﬁ?CQ}\Xi) were approximated
by ¥ o &(X;).

In the applications of DFN for supervised learning, when
giving a completely labelled training dataset, the param-
eters used in DFN (e.g. weights and biases) can be esti-
mated by minimizing the difference between outputs and
targets using the back-propagation algorithm [8]. Whereas,
the targets from Co-Training module {f/i}cl , ﬁ‘?@} are noisy
if the DINA and DINO are inappropriate DCMs. Using
such incomplete classification results, the assumption that
targets are to be unambiguous and accurate cannot hold any
longer. The DFN will exhibit poor performance because the
parameter training depended critically on the accuracy of
training samples [5]. To handle the impact from misclas-
sification from inappropriate DCMs, as shown in Figure 1,
a new reconstruction target was added to the DFN. Since
in theoretical DCMs, a student’s response pattern is condi-
tional distribution of the attribute profile and item param-
eters P(X;|T;,c,0) (0 are the set of item parameters), the
reconstruction of a response pattern can be calculated using
the values of true label layer. The reconstructed response



pattern of ith examinee was calculated as X, = T(Tivc),
where T(-) was the calculation procedure through hidden
layer 3. The training of our DFN is to minimize the follow-
ing binary cross-entropy combination of two targets:

{w,b} = arg min[le(Yi’lcl,ﬁ}cl)
+woH (Y, Yie,) +wsH(Xs, Xi)] - (6)

where {w,b} are the weights and biases set of DFN. Not-
ing that Yi%cwyi?cz?Ti»C € {07 1}Ca ch Y;}Cl = ch Yi?c2 =
ZC Ti,c = 1, C refers to the number of latent classes. Con-
sidering computational efficiency, we chose Rectified Linear
Unit function (ReLU) [17] as the activation function to com-
pute the output of the nodes for all three hidden layers (hid-
den layer 1, 2 & 3) and added L1 regularization term to avoid
over-fitting for each hidden layer. The activation functions
of true label layer and output layer were SoftMazx function
because each node on these two layers was binary variable.
The estimates of parameters within the DFN, {w, b}, and the
weights parameter {w1, w2, ws} of the binary cross-entropy
combination in equation 6 were determined using cross val-
idation.

One challenge of applying ANNSs in the field of CDM is that
the estimation of the latent variables (e.g. attributes or
latent classes) can vary, sometimes dramatically [3] when
the ANN is trained multiple times using the same data. To
handle this issue in our framework, a voting strategy was in-
troduced by running the training procedures multiple times.
The estimated probabilities of belonging to each latent class
P(T;,c|X;) from multiple training were averaged to get the
averaging probability P(T}.|X;). Then, the latent class c;
that ith student belonged to were determined as following:

¢; = argmax(P(T;..| X)) (7)

3. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed framework and
make comparison with the widely used DCMs, we conducted
both simulation study and real assessment data study. In
this section, the methods and results of these two studies
will be discussed.

3.1 Simulated study
3.1.1 Method

In the previous research of DCMs which simulated data
based on the framework of a specific DCM (e.g. DINA,
RRUM and G-DINA), in this paper, the response data were
simulated using a general I x C' item by latent class matrix
without the specific mathematic representation:

1,1 T2 ... TLC
72,1 72,2 ... T2,C

II= . . . (8)
Tl T2 ... TI,C

where the conditional probability that students in /th latent
class answer ith item correctly P(X; = 1l|ac) = mic. [
indicated the number of items, C indicated the number of
latent classes.

Under the framework of item by latent class matrix, we ma-
nipulated four assessment factors in the simulation, includ-

ing the number of items (20 or 30), number of attributes (3
or 4), item discrimination (high or mixed), Q-matrix accu-
racy (100% or 90% accurate) and sample size (1000). The
number of items (20 or 30) and the number of attributes
were selected to reflect the current real assessment applica-
tions which often contained between 20 to 30 items and mea-
sured 3 or 4 attributes (e.g. MELAB data, DTMR data).
For 3 attributes, we only generated 20 items and for 4 at-
tributes, 20 and 30 items were generated respectively. Item
discriminating power is another factor impact performance
of DCMs. Students who have mastered the attributes mea-
sured by an item with high discrimination are expected to
have a higher probability of responding correctly than the
student who have not mastered the attributes. Two levels of
item discrimination were examined in the simulation: high
discrimination indicated the probability differences between
two groups of students to respond to all items are over 0.3;
mixed discrimination indicated that the differences for 50%
items were over 0.3 and for the rest 50% items were less
than 0.3. Two levels of Q-matrix accuracy were also sim-
ulated because the impact of Q-matrix accuracy is critical
to link the DCMs to students’ responses. 100% accuracy
indicated that the Q-matrix were completely known; 90%
accuracy indicated that 10% of elements in each Q-matrix
were mis-specified.

In this simulated study, as comparison, 5 types of widely
used DCMs were introduced as baselines to evaluate the
diagnostic classification performance of the proposed frame-
work. As the two classifiers used in the Co-Training mod-
ule, DINA and DINO models were the selected. In addition,
we chose two general models G-DINA, LCDM and a non-
compensatory model RRUM as the other three base models.
All 5 DCMs were conducted using “CDM” package in R, the
proposed semi-supervised learning method was conducted
using “tensorflow” library in Python.

3.1.2 Results

Table 1 showed the classification rates for tests with 3 at-
tributes and 20 items using different classification methods,
with respect to item discrimination and Q matrix accuracy.
Table 2 and 3 showed the classification rate for tests mea-
sured 4 attributes and contained 20 and 30 items respec-
tively, with respect to item discrimination and Q matrix
accuracy. For each condition, as expected, the more relaxed
DCMs (LCDM, G-DINA and RRUM) had a better classi-
fication performance at both individual attribute level and
the class level (i.e. attribute pattern level) than DINA and
DINO which hold a hard constraint. When the assessment
condition was ideal (i.e. high item discrimination and 100%
accurate Q-matrix), the two general models, LCDM and G-
DINA, always achieved the best classification accuracy.

Simulation results indicated that using the proposed method
(DFN), the classification rates were higher DINA and DINO,
the two initial classifiers used in Co-Training module. Com-
pared to DINA and DINO models, at the attribute level, the
average improvements of classification using DFN was .0218
and .0140, and at the attribute pattern (class) level, the av-
erage improvements were .0589 and .0432. Compared to the
general models LCDM and G-DINA, which often achieved
the best performance in classification, the performance of
DFN was also better than these two methods. The improve-
ments at attribute level were .0056 and .0055 in contrast to
LCDM and G-DINA models respectively. At attribute pat-



Table 1: Comparison of classification rates for 3 attributes us

ing 20 items. The DFN indicates our proposed method;

discriminating is the discriminative power of the test; Q-matrix is the accuracy of the Q-matrix; Al, A2, A3 and Class are
the classification accuracy at three attribute level and pattern level respectively.

Methods | discriminating | Q-matrix | Al A2 A3 Class
DINA High 100% 0.949 | 0.864 | 0.957 | 0.778
DINO 0.953 | 0.871 | 0.952 | 0.784
LCDM 0.96 | 0.917 | 0.957 | 0.842
GDINA 0.96 | 0.917 | 0.957 | 0.842
RRUM 0.953 | 0.91 | 0.958 | 0.827
DFN 0.956 | 0.915 | 0.957 | 0.834
DINA 90% 0.944 | 0.824 | 0.957 | 0.741
DINO 0.946 | 0.852 | 0.944 | 0.757
LCDM 0.956 | 0.897 | 0.958 | 0.819
GDINA 0.956 | 0.897 | 0.958 | 0.819
RRUM 0.949 | 0.879 | 0.958 | 0.794
DFN 0.955 | 0.9 | 0.958 | 0.821
DINA Mixed 100% 0.875 | 0.859 | 0.914 | 0.693
DINO 0.863 | 0.864 | 0.896 | 0.665
LCDM 0.879 | 0.884 | 0.913 | 0.712
GDINA 0.879 | 0.884 | 0.913 | 0.712
RRUM 0.873 | 0.9 | 0.917 | 0.724
DFN 0.883 | 0.884 | 0.915 | 0.720
DINA 90% 0.878 | 0.85 | 0.906 | 0.676
DINO 0.869 | 0.861 | 0.908 | 0.679
LCDM 0.878 | 0.85 | 0.918 | 0.685
GDINA 0.877 | 0.85 | 0.918 | 0.684
RRUM 0.877 | 0.85 | 0.915 | 0.685
DFN 0.874 | 0.888 | 0.908 | 0.704

tern (class) level, the improvements were .0130 and .0132.
The simulation results also indicated that when the Q-matrix
became less accurate, the classification accuracy for each
method dropped at both attribute level and attribute pat-
tern (class) level when other test assessment factors were
hold. When the Q-matrix accuracy decreased to 90% accu-
rate, at the attribute level, the average reductions of classi-
fication accuracy were .0071, .0055, .0114, .0114, .0095 and
.0038 corresponding to DINA, DINO, LCDM, G-DINA,
RRUM and DFN methods respectively. At the attribute
pattern level, the average accuracy reductions were .0163,
.0138,.0298, .0302, .0243 and .0075 for DINA, DINO, LCDM,
G-DINA, RRUM and DFN methods respectively. From this
observation we could find that firstly, the relaxed models
(LCDM, G-DINA and RRUM) were more sensitive to the
accuracy of Q-matrix; secondly, the proposed method was
more robust to the noise within the Q-matrix compared to
the five DCMs.

In addition, high item discriminating was a positive impact
on the classification accuracy of all 6 methods. When the
discrimination of items decreased (from high to mixed), the
classification rate dropped .0301, .0383, .0458, .0458, .0392
and .0397 for DINA, DINO, LCDM, G-DINA, RRUM and
DFN methods at the attribute level. The reductions were
.0780, .1095, .1318, .1318, .1137 and .1158 for DINA, DINO,
LCDM, G-DINA, RRUM and DFN methods at the at-
tribute pattern (class) level. The reason that DFN method
dropped more than DINA, DINO and RRUM (only at the
attribute level) was that when the items were high discrim-
inating, the improvement of classification rate using DFN
was more significant than using mixed discriminating items.

Even though, the performance of DFN at both attribute
level and attribute pattern level were the best among the
six diagnostic classification methods.

3.2 Real data study
3.2.1 Data

In addition to the simulated study, we also tested our pro-
posed method on the Elementary Probability Theory dataset
which is available in the R package “pks” [11]. The dataset
contains 12 items and 504 examinees. 4 different attributes
are measured: 1) the classic probability of an event (pb); 2)
the probability of the complement of an event (cp); 3) the
probability of the union of two disjoint events (un); 4) the
probability of two independent events (id). Since there is no
ground truth for this real data, we replaced the classification
results of RRUM by A-CDM and used the A-CDM classifi-
cation rates as the base line because A-CDM obtained the
lowest BIC when applying to the dataset [19].

3.2.2 Results

In Table 4, one of our initial classifiers in Co-Training mod-
ule, DINO model, achieved much worse classification rate
according to the A-CDM results. At the attribute level, the
classification results were .869, .819, .804 and .946. The
classification rate at attribute pattern (class) level was only
.714. The DINA model’s classification rates were .950, .984,
1990 and .994 at attribute level and .928 at attribute pat-
tern (class) level. By using the proposed method, the per-
formance of DFN was better than both DINA and DINO
models because the algorithm adjusted the weights of two
targets in equation 6. The classification rate at attribute



Table 2: Comparison of classification rates for 4 attributes using 20 items.

The DFN indicates our proposed method;

discriminating is the discriminative power of the test; Q-matrix is the accuracy of the Q-matrix; A1, A2, A3, A4 and Class
are the classification accuracy at four attribute level and pattern level respectively.

Methods | discriminating | Q-matrix | Al A2 A3 A4 | Class
DINA High 100% 0.908 | 0.924 | 0.79 | 0.893 | 0.591
DINO 0.909 | 0.928 | 0.858 | 0.899 | 0.653
LCDM 0.918 | 0.929 | 0.858 | 0.919 | 0.67
GDINA 0.918 | 0.929 | 0.858 | 0.919 | 0.67
RRUM 0.923 | 0.921 | 0.853 | 0.917 | 0.664
DFN 0.919 | 0.925 | 0.858 | 0.922 | 0.67
DINA 90% 0.909 | 0.922 | 0.74 | 0.886 | 0.56
DINO 0.903 | 0.924 | 0.852 | 0.879 | 0.621
LCDM 0.904 | 0.922 | 0.824 | 0.887 | 0.616
GDINA 0.904 | 0.922 | 0.824 | 0.887 | 0.616
RRUM 0.905 | 0.922 | 0.8 | 0.884 | 0.599
DFN 0.912 | 0.923 | 0.862 | 0.89 | 0.648
DINA Mixed 100% 0.854 | 0.836 | 0.824 | 0.851 | 0.503
DINO 0.863 | 0.817 | 0.855 | 0.816 | 0.484
LCDM 0.867 | 0.823 | 0.855 | 0.84 | 0.509
GDINA 0.867 | 0.824 | 0.855 | 0.84 | 0.51
RRUM 0.878 | 0.831 | 0.855 | 0.837 | 0.522
DFN 0.864 | 0.842 | 0.857 | 0.859 | 0.531
DINA 90% 0.856 | 0.826 | 0.744 | 0.854 | 0.448
DINO 0.854 | 0.817 | 0.855 | 0.851 | 0.503
LCDM 0.865 | 0.817 | 0.776 | 0.844 | 0.469
GDINA 0.865 | 0.817 | 0.776 | 0.844 | 0.469
RRUM 0.864 | 0.821 | 0.855 | 0.84 | 0.509
DFN 0.852 | 0.871 | 0.855 | 0.852 | 0.542

level were .964, .988, .988 and .996. The attribute pattern
(class) classification rate was .952. The performance was
close to the general model LCDM and G-DINA. The results
showed that even one initial classifier cannot achieve a good
performance, the proposed method still has ability to ob-
tain a more accurate classification rate than both two initial
classifiers.

4. CONCLUSION AND DISCUSSION

The propose of this paper is to design a new semi-supervised
learning method used to interpret student performance on
diagnostic measurement assessment and to evaluate the per-
formances of the proposed method using both simulation
study and real assessment data. In the proposed framework,
we viewed the classification results of inappropriate DCMs
as incomplete labels and introduced a method by combin-
ing a Co-Training module and deep feedforward networks
together. In Co-Training module, we used two basic DCMs,
DINA and DINO models, as the initial classifiers. In the
DFN module, by using two types of targets, the outputs of
Co-Training module and true response patterns, was to find
the correct classification results.

In the simulated study, we compared the proposed method
with other five DCMs. Beside the two initial classifiers,
DINA and DINO, 3 widely used reflaxed DCMs, LCDM, G-
DINA and RRUM were also introduced. By varying the fac-
tors (item discrimination, Q-matrix accuracy, number of at-
tributes and items) which impact the performance of DCMs,
the comparison results indicated that the proposed method
achieved better classification rates than the five DCMs across
all assessment conditions at both attribute level and at-

tribute pattern (class) level. In addition, the proposed method
was robust to the Q-matrix mis-specification because the
classification rate dropped less than the other five DCMs
when the Q-matrix accuracy decreased to 90% accuracy.
Although the classification rates of the proposed method
dropped more than DINA and DINO when the item dis-
criminating power reduced, the proposed method was more
robust to the item discriminating reduction than the general
DCMs. In the real assessment data-based study, the results
indicated that even one of the classifiers achieved bad classi-
fication rate, the performance of our proposed method was
better than both initial classifiers and also achieved as clas-
sification rates compared to general DCMs.

One concern of this study is that the current analysis only
focused on the classification rate of the proposed method.
In the future study, the classification results could be used
to analyze item parameters to evaluate item discriminating
power among students’ mastery level for specific attributes
or determine the relationship between items and attributes
to explore the attribute structures. The classification results
could also be useful to explore new type of DCMs when
giving new assessment dataset.

In summary, the proposed method provided a novel point of
view to classify students’ attributes using a computational
psychometric method by combining semi-supervised learn-
ing and theoretic DCMs. Both simulated study and real
assessment data-based study showed the advantage of using
this new strategy. Considering some limitations in this pa-
per, a future study is needed to test the performance of this
method on assessment data exploration.



Table 3: Comparison of classification rates for 4 attributes using 30 items.

The DFN indicates our proposed method;

discriminating is the discriminative power of the test; Q-matrix is the accuracy of the Q-matrix; A1, A2, A3, A4 and Class
are the classification accuracy at four attribute level and pattern level respectively.

Methods | discriminating | Q-matrix | Al A2 A3 A4 | Class
DINA High 100% 0.937 | 0.938 | 0.814 | 0.892 | 0.641
DINO 0.942 | 0.941 | 0.854 | 0.902 | 0.681
LCDM 0.947 | 0.949 | 0.873 | 0.925 | 0.732
GDINA 0.947 | 0.949 | 0.873 | 0.925 | 0.732
RRUM 0.948 | 0.945 | 0.872 | 0.917 | 0.719
DFN 0.949 | 0.944 | 0.872 | 0.916 | 0.722
DINA 90% 0.934 | 0.94 | 0.853 | 0.853 | 0.64
DINO 0.935 | 0.924 | 0.855 | 0.874 | 0.644
LCDM 0.948 | 0.946 | 0.858 | 0.92 | 0.708
GDINA 0.948 | 0.946 | 0.859 | 0.92 | 0.709
RRUM 0.945 | 0.945 | 0.869 | 0.915 | 0.713
DFN 0.952 | 0.948 | 0.873 | 0.916 | 0.723
DINA Mixed 100% 0.903 | 0.876 | 0.8 | 0.882 | 0.56
DINO 0.911 | 0.884 | 0.858 | 0.858 | 0.586
LCDM 0.912 | 0.886 | 0.857 | 0.88 | 0.616
GDINA 0.912 | 0.886 | 0.858 | 0.88 | 0.617
RRUM 0.9 | 0.884 | 0.858 | 0.871 | 0.592
DFN 0.91 | 0.889 | 0.862 | 0.881 | 0.616
DINA 90% 0.908 | 0.887 | 0.847 | 0.876 | 0.603
DINO 0.906 | 0.883 | 0.852 | 0.836 | 0.566
LCDM 0.908 | 0.891 | 0.863 | 0.868 | 0.605
GDINA 0.908 | 0.891 | 0.863 | 0.868 | 0.605
RRUM 0.905 | 0.891 | 0.864 | 0.861 | 0.602
DFN 0.909 | 0.885 | 0.859 | 0.871 | 0.61

Table 4: Comparison of classification accuracy among 5 base models and the proposed method using the dataset in [11];
A-CDM was used as the true value because it achieved lowest BIC in [19].

S.
1]

Methods pb cp un id Class

DINA 0.950 | 0.984 | 0.990 | 0.994 | 0.928

DINO 0.869 | 0.819 | 0.804 | 0.946 | 0.714

LCDM 0.986 | 0.976 | 0.988 | 0.998 | 0.958

GDINA | 0.980 | 0.996 | 0.996 | 0.998 | 0.974

A-CDM | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

DFN 0.968 | 0.988 | 0.988 | 0.996 | 0.952
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